BRAF mutations are found in many human tumors, namely melanomas ( approximately 70%) and colon carcinomas ( approximately 15%). This paper presents a method for identification of exon 15 BRAF mutations by denaturant capillary electrophoresis (CE), an analysis method that is sensitive, cost-effective (involving only polymerase chain reaction (PCR) and electrophoresis) and capable of high-throughput screening. In total, we found 21 (70%) out of 30 melanoma cell lines with BRAF mutations in exon 15: two of which were the p.Val600Asp (c.1799-800TG>AT) mutation, one cell line contained the p.Val600Arg (c.1798-99GT>AG) mutation, and 18 cell lines contained the p.Val600Glu (c.1799T>A) mutation. Of the nine cell lines that did not contain a BRAF mutation, five contained an NRAS mutation at exon 2, and no mutations were detected in NRAS exon 1. There was no overlap of NRAS and BRAF mutations in the same cell line. In addition, we looked at 221 colon biopsy samples and identified one further BRAF mutation, the p.Asp594Gly (c.1781A>G) mutation, in seven samples. The p.Val600Glu mutation was identified in 11 of the colon biopsy samples. Using the four mutations of BRAF exon 15, we then constructed a denaturing CE standard capable of distinguishing between each of the mutations; therefore, sequencing does not need to be performed to confirm the mutation. In conclusion, this sensitive, cost-effective mutation assay for BRAF (and RAS) will provide the opportunity to detect and determine mutations without the need to purify samples for sequencing. Future large-scale studies will provide the clinical usefulness of such mutations.
Sex determination of anonymous samples is a requirement before analysis of DNA variation on X or Y chromosomes. Based on this, we designed a method for screening samples on different DNA capillary sequencing instruments with a sensitivity that is able to quantify sex chromosome abnormalities. The two different amelogenin alleles sited on the X and Y chromosomes were polymerase chain reaction amplified with the same set of primers and separated by denaturant capillary electrophoresis (DCE). Sex chromosome ratios could be reproducibly determined with a relative standard deviation of 8.7%, which is sufficient to distinguish a normal XY karyotype from an XYY karyotype associated with Klinefelter syndrome. Reconstruction experiments demonstrated sensitivity down to a simulated Y:X allelic ratio of 1:127 in all three instruments, enabling the prediction of sex chromosomal aneuploidies. When tested on anonymous pooled and single samples, DCE gave a good prediction of the male to female ratio in pools of 1000 blood donors. In conclusion, DCE is a simple and robust method for sex determination that can be readily performed on commercially available CE systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.