This manuscript uses data from the U.S. Environmental Protection Agency to analyze the potential for energy recovery from wastewater treatment plants via anaerobic digestion with biogas utilization and biosolids incineration with electricity generation. These energy recovery strategies could help offset the electricity consumption of the wastewater sector and represent possible areas for sustainable energy policy implementation. We estimate that anaerobic digestion could save 628 to 4,940 million kWh annually in the United States. In Texas, anaerobic digestion could save 40.2 to 460 million kWh annually and biosolids incineration could save 51.9 to 1,030 million kWh annually
Carbon capture and storage (CCS) can significantly reduce the amount of CO(2) emitted from coal-fired power plants but its operation significantly reduces the plant's net electrical output and decreases profits, especially during times of high electricity prices. An amine-based CCS system can be modified adding amine-storage to allow postponing 92% of all its energy consumption to times of lower electricity prices, and in this way has the potential to effectively reduce the cost of CO(2) capture by reducing the costs of the forgone electricity sales. However adding amine-storage to a CCS system implies a significant capital cost that will be outweighed by the price-arbitrage revenue only if the difference between low and high electricity prices is substantial. In this paper we find a threshold for the variability in electricity prices that make the benefits from electricity price arbitrage outweigh the capital costs of amine-storage. We then look at wholesale electricity markets in the Eastern Interconnect of the United States to determine profitability of amine-storage systems in this region. Using hourly electricity price data from years 2007 and 2008 we find that amine storage may be cost-effective in areas with high price variability.
The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the tradeoffs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site, with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.