We describe herein the hydrogen-atom transfer (HAT)/ proton-coupled electron-transfer (PCET) reactivity for FeIV-oxo and FeIII-oxo complexes (1–4) that activate C-H, N-H, and O-H bonds in 9,10 dihydroanthracene (S1), dimethylformamide (S2), 1,2 diphenylhydrazine (S3), p-methoxyphenol (S4), and 1,4-cyclohexadiene (S5). In 1–3, the iron is pentacoordinated by tris[N'-tert-butylureaylato)-N-ethylene]aminato ([H3buea]3−) or its derivatives. These complexes are basic, in the order 3 >> 1 > 2. Oxidant 4, [FeIVN4Py(O)]2+ (N4Py: N,N-bis(2-pyridylmethyl)-bis(2-pyridyl) methylamine), is the least basic oxidant. The DFT results match experimental trends and exhibit a mechanistic spectrum ranging from concerted HAT and PCET reactions to concerted-asynchronous proton transfer (PT) / electron transfer (ET) mechanisms, all the way to PT. The singly occupied orbital along the O---H---X (X= C, N, O) moiety in the TS shows clearly that in the PCET cases, the electron is transferred separately from the proton. The Bell-Evans-Polanyi principle does not account for the observed reactivity pattern, as evidenced by the scatter in the plot of calculated barrier vs. reactions driving forces. However, a plot of the deformation energy in the TS vs. the respective barrier provides a clear signature of the HAT/PCET dichotomy. Thus, in all C-H bond activations, the barrier derives from the deformation energy required to create the TS, whereas in N-H/O-H bond activations, the deformation energy is much larger than the corresponding barrier, indicating the presence of stabilizing interaction between the TS fragments. A valence bond model is used to link the observed results with the basicity/acidity of the reactants.
High spin oxoiron(IV) complexes have been proposed to be a key intermediate in numerous non-heme metalloenzymes. The successful detection of similar complexes has been reported for only two synthetic systems. A new synthetic high spin oxoiron(IV) complex is now reported that can be prepared from a well-characterized oxoiron(III) species. This new oxoiron(IV) complexes can also be prepared from a hydroxoiron(III) species via a proton-coupled electron transfer process—a first in synthetic chemistry. The oxoiron(IV) complexes has been characterized with a variety of spectroscopic methods: FTIR studies showed a feature associated with the Fe–O bond at ν(Fe16O) = 799 cm−1 that shifted to 772 cm−1 in the 18O complex; Mössbauer experiments show a signal with an δ = 0.02 mm/s and |ΔEQ | = 0.43 mm/s, electronic parameters consistent with a Fe(IV) center; and optical spectra had visible bands at λmax = 440 (εM = 3100), 550 (εM = 1900) and 808 (εM = 280) nm. In addition, the oxoiron(IV) complex gave the first observable EPR features in the parallel-mode EPR spectrum with g-values at 8.19 and 4.06. A simulation for an S = 2 species with D = 4.0(5) cm−1, E/D = 0.03, σE/D = 0.014, and gz = 2.04 generates a fit that accurately predicted the intensity, lineshape, and position of the observed signals. These results showed the EPR spectroscopy can be a useful method for determining the properties of high spin oxoiron(IV) complexes. The oxoiron(VI) complex was crystallized at −35°C and its structure was determined by X-ray diffraction methods. The complex has a trigonal bipyramidal coordination geometry with the Fe–O unit positioned within a hydrogen bonding cavity. The FeIV–O unit bond length is 1.680(1) Å, which is the longest distance yet reported for monomeric oxoiron(IV) complex.
The cobalt complex [CoIIIN4H(Br)2]+ (N4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7),2,11,13,15-pentaene) was used for electrocatalytic CO2 reduction in wet MeCN with a glassy carbon working electrode. When water was employed as the proton source (10 M in MeCN), CO was produced (fCO= 45% ± 6.4) near the CoI/0 redox couple for [CoIIIN4H(Br)2]+ (E1/2 = −1.88 V FeCp2+/0) with simultaneous H2 evolution (fH2= 30% ± 7.8). Moreover, we successfully demonstrated that the catalytically active species is homogeneous through the use of control experiments and XPS studies of the working glassy-carbon electrodes. As determined by cyclic voltammetry, CO2 catalysis occurred near the formal CoI/0redox couple, and attempts were made to isolate the triply reduced compound (“[Co0N4H]”). Instead, the doubly reduced (“CoI”) compounds [CoN4] and [CoN4H(MeCN)]+ were isolated and characterized by X-ray crystallography. Their molecular structures prompted DFT studies to illuminate details regarding their electronic structure. The results indicate that reducing equivalents are stored on the ligand, implicating redox noninnocence in the ligands for H2 evolution and CO2 reduction electrocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.