Sewage sludge-derived materials were used as adsorbents of hydrogen sulfide from moist air. The adsorbent obtained by carbonization at 950 degrees C has a capacity twice of that of coconut-shell-based activated carbon. The capacity of the sludge-derived materials increases with increasing carbonization temperature. It is likelythatduring carbonization at 950 degrees C a mineral-like phase is formed that consists of such catalytically active metals as iron, zinc, and copper. The results obtained demonstrate that the presence of iron oxide significantly increases the capacity of commercial carbon and activated alumina. The sludge-derived adsorbents are efficient for hydrogen sulfide removal until the pore entrances are blocked with sulfur as the product of oxidation reaction. For materials in which the catalytic effect is predominant, hydrogen sulfide is adsorbed until all pores are filled with sulfur. There is also indication that chemisorption plays a significant role in the removal of hydrogen sulfide from moist air.
Sewage sludge-derived materials carbonized at temperatures between 400 and 950 degrees C were used for adsorption of sulfur dioxide from dry and moist air. The materials were characterized using sorption of nitrogen and thermal analysis. The sulfur dioxide capacity was measured according to a laboratory-developed breakthrough test. It was found that the capacity of the adsorbents increases with increasing temperature of carbonization. It is likely that during carbonization at high temperatures such catalytic metals as calcium become active. They play a significant role in the SO2 removal process by neutralization of sulfuric acid formed as a result of oxidation of sulfur dioxide in wet conditions. Besides sulfuric acid, various sulfur-containing salts are formed. It was shown that, after their removal using waterwashing,the SO2 capacitysignificantly decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.