Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.canopy structure | field inventory plots | forest carbon | Peru tropical forest | LiDAR
Increasing size and abundance of lianas relative to trees are pervasive changes in Neotropical forests that may lead to reduced forest carbon stocks. Yet the liana growth form is chronically understudied in large-scale tropical forest censuses, resulting in few data on the scale, cause, and impact of increasing lianas. Satellite and airborne remote sensing provide potential tools to map and monitor lianas at much larger spatial and rapid temporal scales than are possible with plotbased forest censuses. We combined high-resolution airborne imaging spectroscopy and a ground-based tree canopy census to investigate whether tree canopies supporting lianas could be discriminated from tree canopies with no liana coverage. Using support vector machine algorithms, we achieved accuracies of nearly 90% in discriminating the presence-absence of lianas, and low error (15.7% RMSE) when predicting liana percent canopy cover. When applied to the full image of the study site, our model had a 4.1% false-positive error rate as validated against an independent plot-level dataset of liana canopy cover. Using the derived liana cover classification map, we show that 6.1%-10.2% of the 1823 ha study site has high-to-severe (50-100%) liana canopy cover. Given that levels of liana infestation are increasing in Neotropical forests and can result in high tree mortality, the extent of high-to-severe liana canopy cover across the landscape may have broad implications for ecosystem function and forest carbon storage. The ability to accurately map landscape-scale liana infestation is crucial to quantifying their effects on forest function and uncovering the mechanisms underlying their increase.
Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO2), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO2. However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001–2100. We modeled 32 unique scenarios, spanning 4 land use and 2 radiative forcing scenarios as simulated by four global climate models. Between 2001 and 2015, carbon storage in California's terrestrial ecosystems declined by −188.4 Tg C, with a mean annual flux ranging from a source of −89.8 Tg C/year to a sink of 60.1 Tg C/year. The large variability in the magnitude of the state's carbon source/sink was primarily attributable to interannual variability in weather and climate, which affected the rate of carbon uptake in vegetation and the rate of ecosystem respiration. Under nearly all future scenarios, carbon storage in terrestrial ecosystems was projected to decline, with an average loss of −9.4% (−432.3 Tg C) by the year 2100 from current stocks. However, uncertainty in the magnitude of carbon loss was high, with individual scenario projections ranging from −916.2 to 121.2 Tg C and was largely driven by differences in future climate conditions projected by climate models. Moving from a high to a low radiative forcing scenario reduced net ecosystem carbon loss by 21% and when combined with reductions in land‐use change (i.e., moving from a high to a low land‐use scenario), net carbon losses were reduced by 55% on average. However, reconciling large uncertainties associated with the effect of increasing atmospheric CO2 is needed to better constrain models used to establish baseline conditions from which ecosystem‐based climate mitigation strategies can be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.