In the synthesis of cesium lead bromide (CsPbBr 3 ) perovskite quantum dots, with an electronic absorption and emission band around 510 nm, and perovskite magic-sized clusters (PMSCs), with an electronic absorption and emission band around 430 nm, another distinct absorption and emission around 400 nm is often observed. While many would attribute this band to small perovskite particles, here we show strong evidence that this band is a result of the formation of lead bromide molecular clusters (PbBr 2 MCs) passivated with ligands, which do not contain the A component of the ABX 3 perovskite structure. This evidence comes from a systematic comparative study of the reaction products with and without the A component under otherwise identical experimental conditions. The results support that the near 400 nm band originates from ligand-passivated PbBr 2 MCs. This observation seems to be quite general and is significant in understanding the nature of the reaction products in the synthesis of metal halide perovskite nanostructures.
BackgroundResearch into perovskite nanocrystals (PNCs) has uncovered interesting properties compared to their bulk counterparts, including tunable optical properties due to size‐dependent quantum confinement effect (QCE). More recently, smaller PNCs with even stronger QCE have been discovered, such as perovskite magic sized clusters (PMSCs) and ligand passivated PbX2 metal halide molecular clusters (MHMCs) analogous to perovskites.ObjectiveThis review aims to present recent data comparing and contrasting the optical and structural properties of PQDs, PMSCs, and MHMCs, where CsPbBr3 PQDs have first excitonic absorption around 520 nm, the corresponding PMSCS have absorption around 420 nm, and ligand passivated MHMCs absorb around 400 nm.ResultsCompared to normal perovskite quantum dots (PQDs), these clusters exhibit both a much bluer optical absorption and emission and larger surface‐to‐volume (S/V) ratio. Due to their larger S/V ratio, the clusters tend to have more surface defects that require more effective passivation for stability.ConclusionRecent study of novel clusters has led to better understanding of their properties. The sharper optical bands of clusters indicate relatively narrow or single size distribution, which, in conjunction with their blue absorption and emission, makes them potentially attractive for applications in fields such as blue single photon emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.