improves outcome after cardiac arrest, but prehospital cooling immediately after return of spontaneous circulation may result in better outcomes.OBJECTIVE To determine whether prehospital cooling improves outcomes after resuscitation from cardiac arrest in patients with ventricular fibrillation (VF) and without VF. DESIGN, SETTING, AND PARTICIPANTSA randomized clinical trial that assigned adults with prehospital cardiac arrest to standard care with or without prehospital cooling, accomplished by infusing up to 2 L of 4°C normal saline as soon as possible following return of spontaneous circulation. Adults in King County, Washington, with prehospital cardiac arrest and resuscitated by paramedics were eligible and 1359 patients (583 with VF and 776 without VF) were randomized between December 15, 2007, and December 7, 2012. Patient follow-up was completed by May 1, 2013. Nearly all of the patients resuscitated from VF and admitted to the hospital received hospital cooling regardless of their randomization. MAIN OUTCOMES AND MEASURESThe primary outcomes were survival to hospital discharge and neurological status at discharge. RESULTSThe intervention decreased mean core temperature by 1.20°C (95% CI, −1.33°C to −1.07°C) in patients with VF and by 1.30°C (95% CI, −1.40°C to −1.20°C) in patients without VF by hospital arrival and reduced the time to achieve a temperature of less than 34°C by about 1 hour compared with the control group. However, survival to hospital discharge was similar among the intervention and control groups among patients with VF (62.7% [95% CI, 57.0%-68.0%] vs 64.3% [95% CI, 58.6%-69.5%], respectively; P = .69) and among patients without VF (19.2% [95% CI, 15.6%-23.4%] vs 16.3% [95% CI, 12.9%-20.4%], respectively; P = .30). The intervention was also not associated with improved neurological status of full recovery or mild impairment at discharge for either patients with VF (57.5% [95% CI, 51.8%-63.1%] of cases had full recovery or mild impairment vs 61.9% [95% CI, 56.2%-67.2%] of controls; P = .69) or those without VF (14.4% [95% CI, 11.3%-18.2%] of cases vs 13.4% [95% CI,10.4%-17.2%] of controls; P = .30). Overall, the intervention group experienced rearrest in the field more than the control group (26% [95% CI, 22%-29%] vs 21% [95% CI, 18%-24%], respectively; P = .008), as well as increased diuretic use and pulmonary edema on first chest x-ray, which resolved within 24 hours after admission.CONCLUSION AND RELEVANCE Although use of prehospital cooling reduced core temperature by hospital arrival and reduced the time to reach a temperature of 34°C, it did not improve survival or neurological status among patients resuscitated from prehospital VF or those without VF.
Background-Although delayed hospital cooling has been demonstrated to improve outcome after cardiac arrest, in-field cooling started immediately after the return of spontaneous circulation may be more beneficial. The aims of the present pilot study were to assess the feasibility, safety, and effectiveness of in-field cooling. Methods and Results-We determined the effect on esophageal temperature, before hospital arrival, of infusing up to 2 L of 4°C normal saline as soon as possible after resuscitation from out-of-hospital cardiac arrest. A total of 125 such patients were randomized to receive standard care with or without intravenous cooling. Of the 63 patients randomized to cooling, 49 (78%) received an infusion of 500 to 2000 mL of 4°C normal saline before hospital arrival. These 63 patients experienced a mean temperature decrease of 1.24Ϯ1°C with a hospital arrival temperature of 34.7°C, whereas the 62 patients not randomized to cooling experienced a mean temperature increase of 0.10Ϯ0.94°C (PϽ0.0001) with a hospital arrival temperature of 35.7°C. In-field cooling was not associated with adverse consequences in terms of blood pressure, heart rate, arterial oxygenation, evidence for pulmonary edema on initial chest x-ray, or rearrest. Secondary end points of awakening and discharged alive from hospital trended toward improvement in ventricular fibrillation patients randomized to in-field cooling. Conclusions-These pilot data suggest that infusion of up to 2 L of 4°C normal saline in the field is feasible, safe, and effective in lowering temperature. We propose that the effect of this cooling method on neurological outcome after cardiac arrest be studied in larger numbers of patients, especially those whose initial rhythm is ventricular fibrillation.
Nurse managers and physician directors of busy emergency departments representing the largest urban areas in the United States identify multiple barriers to implementing time-sensitive resuscitation to patients with severe sepsis. More than half of all respondents recognized a critical shortage of nursing staff, problems in obtaining central venous pressure monitoring, and challenges in identification of patients with sepsis as the largest roadblocks to overcome in implementing early goal-directed therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.