Context MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs which regulate gene expression. They originate from various tissues including bone and regulate different biological mechanisms including bone metabolism. Objective The aim of this project was to investigate circulating miRNAs as promising biomarkers for treatment monitoring in women with postmenopausal osteoporosis on denosumab (DMAB) therapy. Design, Setting and Patients In this prospective, observational, single-centre study twenty-one postmenopausal women treated with DMAB were included for a longitudinal follow-up of two years. Interventions and Main Outcome Measures Next-generation sequencing (NGS) was performed to screen for serological miRNAs at defined time points (baseline, month 6 and month 24). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm NGS findings in the entire cohort. Bone turnover markers (BTM) P1NP and CTX, and bone mineral density (BMD) by Dual X-Ray absorptiometry (DXA) were assessed and correlated to miRNAs. Results BMD at the hip (5,5%, p = 0.0006) and lumbar spine significantly increased (11,4%, p-value = 0.017) and CTX (64,1%, p < 0.0001) and P1NP (69,3%, p < 0.0001) significantly decreased during treatment. NGS analysis revealed significant changes in miRNAs after 2-years of DMAB treatment, but not after 6-months. Seven miRNAs were confirmed by RT-qPCR to be significantly changed during a 2-year course of DMAB treatment compared to baseline. Four of these were found to be mainly transcribed in blood cells including monocytes. Correlation analysis identified a significant correlation between change in miRNA and change in BTMs as well as BMD. Based on effect size and correlation strength, miR-454-3p, miR-26b-5p and miR-584-5p were defined as top biomarker candidates with the strongest association to the sustained effect of denosumab on bone in osteoporotic patients. Conclusions Two years of DMAB-treatment resulted in the upregulation of 7 miRNAs, four of which are mainly transcribed in monocytes indicating a potential impact of DMAB on circulating osteoclast precursor cells. These changes were associated to BMD gain and BTM suppression and could therefore be useful for monitoring DMAB-treatment response.
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.