Large studies use genotype data to discover genetic contributions to complex traits and infer relationships between those traits. Co-incident geographical variation in genotypes and health traits can bias these analyses. Here we show that single genetic variants and genetic scores composed of multiple variants are associated with birth location within UK Biobank and that geographic structure in genotype data cannot be accounted for using routine adjustment for study centre and principal components derived from genotype data. We find that major health outcomes appear geographically structured and that coincident structure in health outcomes and genotype data can yield biased associations. Understanding and accounting for this phenomenon will be important when making inference from genotype data in large studies.
Summary1. Population dynamics often defy predictions based on empirical models, and explanations for noisy dynamics have ranged from deterministic chaos to environmental stochasticity. Transient (short-term) dynamics following disturbance or perturbation have recently gained empirical attention from researchers as further possible effectors of complicated dynamics. 2. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. 3. We apply the Kreiss bound and other transient indices to a data base of matrix models from 108 plant species, in an attempt to detect ecological and mathematical patterns in the transient dynamical properties of plant populations. 4. We describe how life history influences the transient dynamics of plant populations: species at opposite ends of the scale of ecological succession have the highest potential for transient amplification and attenuation, whereas species with intermediate life history complexity have the lowest potential. 5. We find ecological relationships between transients and asymptotic dynamics: faster-growing populations tend to have greater potential magnitudes of transient amplification and attenuation, which could suggest that short-and long-term dynamics are similarly influenced by demographic parameters or vital rates. 6. We describe a strong dependence of transient amplification and attenuation on matrix dimension: perhaps signifying a potentially worrying artefact of basic model parameterization. 7. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest a combination of ecological and modelling strategy influences. This better understanding of transients should guide the formulation of management and conservation strategies for all plant populations that suffer disturbances away from stable equilibria.
BackgroundBody mass index (BMI) is criticized for not distinguishing fat from lean mass and ignoring fat distribution, leaving its ability to detect health effects unclear.ObjectivesThe aim of this study was to compare BMI with total and regional fat indexes from dual-energy x-ray absorptiometry in their associations with cardiometabolic traits. Duration of exposure to and change in each index across adolescence were examined in relation to detailed traits in young adulthood.MethodsBMI was examined alongside total, trunk, arm, and leg fat indexes (each in kilograms per square meter) from dual-energy x-ray absorptiometry at ages 10 and 18 years in relation to 230 traits from targeted metabolomics at age 18 years in 2,840 offspring from the Avon Longitudinal Study of Parents and Children.ResultsHigher total fat mass index and BMI at age 10 years were similarly associated with cardiometabolic traits at age 18 years, including higher systolic and diastolic blood pressure, higher very low-density lipoprotein and low-density lipoprotein cholesterol, lower high-density lipoprotein cholesterol, higher triglycerides, and higher insulin and glycoprotein acetyls. Associations were stronger for both indexes measured at age 18 years and for gains in each index from age 10 to 18 years (e.g., 0.45 SDs [95% confidence interval: 0.38 to 0.53] in glycoprotein acetyls per SD unit gain in fat mass index vs. 0.38 SDs [95% confidence interval: 0.27 to 0.48] per SD unit gain in BMI). Associations resembled those for trunk fat index. Higher lean mass index was weakly associated with traits and was not protective against higher fat mass index.ConclusionsThe results of this study support abdominal fatness as a primary driver of cardiometabolic dysfunction and BMI as a useful tool for detecting its effects.
Summary1. Ecological systems are prone to disturbances and perturbations. For stage-structured populations, communities and ecosystems, measurements of system magnitude in the short term will depend on how biased the stage structure is following a disturbance. 2. We promote the use of the Kreiss bound, a lower bound predictor of transient system magnitude that links transient amplification to system perturbations. The Kreiss bound is a simple and powerful alternative to other indices of transient dynamics, in particular reactivity and the amplification envelope. 3. We apply the Kreiss bound to a discrete-time model of an endangered species and a continuous-time rainforest model. 4. We promote the analysis of transient amplification relative to both initial conditions and asymptotic dynamics. 5. Transient amplification of ecological systems, following exogenous disturbances, has been implicated in the success of invasive species, persistence of extinction debts and species coexistence. 6. Synthesis and applications . The Kreiss bound allows simple assessment of transient amplification in ecological systems and the response of potential amplification to changes in system parameters. Hence it is an important tool for comparative analyses of ecological systems and should provide powerful predictions of optimal population management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.