In conventional networks, there was a tight bond between the control plane and the data plane. The introduction of Software-Defined Networking (SDN) separated these planes, and provided additional features and tools to solve some of the problems of traditional network (i.e., latency, consistency, efficiency). SDN is a flexible networking paradigm that boosts network control, programmability and automation. It proffers many benefits in many areas, including routing. More specifically, for efficiently organizing, managing and optimizing routing in networks, some intelligence is required, and SDN offers the possibility to easily integrate it. To this purpose, many researchers implemented different machine learning (ML) techniques to enhance SDN routing applications. This article surveys the use of ML techniques for routing optimization in SDN based on three core categories (i.e. supervised learning, unsupervised learning, and reinforcement learning). The main contributions of this survey are threefold. Firstly, it presents detailed summary tables related to these studies and their comparison is also discussed, including a summary of the best works according to our analysis. Secondly, it summarizes the main findings, best works and missing aspects, and it includes a quick guideline to choose the best ML technique in this field (based on available resources and objectives). Finally, it provides specific future research directions divided into six sections to conclude the survey. Our conclusion is that there is a huge trend to use intelligence-based routing in programmable networks, particularly during the last three years, but a lot of effort is still required to achieve comprehensive comparisons and synergies of approaches, meaningful evaluations based on open datasets and topologies, and detailed practical implementations (following recent standards) that could be adopted by industry. In summary, future efforts should be focused on reproducible research rather than on new isolated ideas. Otherwise, most of these applications will be barely implemented in practice.
for their support and assessment. We would also like to thank the Secretaría de Estado de Telecomunicaciones e Infraestructuras Digitales, specifically D. Antonio Fernández-Paniagua and Pedro Luis Alonso for their guidance and problem definition.
This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms. On the other hand, the short-term analysis of the dammed water level in the hydropower reservoir was modeled as a prediction problem, where machine learning regression techniques were studied. A set of models, including different types of neural networks, Support Vector regression, or Gaussian processes was tested. Real data from a hydropower reservoir located in Galicia, Spain, qwew considered, together with predictive variables from upstream measuring stations. We show that the techniques presented in this paper offer an excellent tool for the long- and short-term analysis and prediction of dammed water level in reservoirs for hydropower purposes, especially important for the management of water resources in areas with hydrology stress, such as Spain.
We review the latest modeling techniques and propose new hybrid SAELSTM framework based on Deep Learning (DL) to construct prediction intervals for daily Global Solar Radiation (GSR) using the Manta Ray Foraging Optimization (MRFO) feature selection to select model parameters. Features are employed as potential inputs for Long Short-Term Memory and a seq2seq SAELSTM autoencoder Deep Learning (DL) system in the final GSR prediction. Six solar energy farms in Queensland, Australia are considered to evaluate the method with predictors from Global Climate Models and ground-based observation. Comparisons are carried out among DL models (i.e., Deep Neural Network) and conventional Machine Learning algorithms (i.e., Gradient Boosting Regression, Random Forest Regression, Extremely Randomized Trees, and Adaptive Boosting Regression). The hyperparameters are deduced with grid search, and simulations demonstrate that the DL hybrid SAELSTM model is accurate compared with the other models as well as the persistence methods. The SAELSTM model obtains quality solar energy prediction intervals with high coverage probability and low interval errors. The review and new modelling results utilising an autoencoder deep learning method show that our approach is acceptable to predict solar radiation, and therefore is useful in solar energy monitoring systems to capture the stochastic variations in solar power generation due to cloud cover, aerosols, ozone changes, and other atmospheric attenuation factors.
In this paper we propose a method based on deep learning that detects multiple people from a single overhead depth image with high reliability. Our neural network, called DPDnet, is based on two fully-convolutional encoder-decoder neural blocks based on residual layers. The main block takes a depth image as input and generates a pixel-wise confidence map, where each detected person in the image is represented by a Gaussian-like distribution. The refinement block combines the depth image and the output from the main block, to refine the confidence map. Both blocks are simultaneously trained end-to-end using depth images and head position labels.The experimental work shows that DPDnet outperforms state-of-the-art methods, with accuracies greater than 99% in three different publicly available datasets, without retraining not fine-tuning. In addition, the computational complexity of our proposal is independent of the number of people in the scene and runs in real time using conventional GPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.