γ-Aminobutyric acid type A (GABAA) receptors are pentameric GABA-gated chloride channels that are, in mammalians, drawn from a repertoire of 19 different genes, namely α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3. The existence of this wide variety of subunits as well as their diverse assembly into different subunit compositions result in miscellaneous receptor subtypes. In combination with the large number of known and putative allosteric binding sites, this leads to a highly complex pharmacology. Recently, a novel binding site at extracellular α+/β− interfaces was described as the site of modulatory action of several pyrazoloquinolinones. In this study we report a highly potent ligand from this class of compounds with pronounced β1-selectivity that mainly lacks α-subunit selectivity. It constitutes the most potent β1-selective positive allosteric modulatory ligand with known binding site. In addition, a proof of concept pyrazoloquinolinone ligand lacking the additional high affinity interaction with the benzodiazepine binding site is presented. Ultimately, such ligands can be used as invaluable molecular tools for the detection of β1-containing receptor subtypes and the investigation of their abundance and distribution.
Background and PurposeThe GABAA receptors are ligand‐gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β− interfaces, using a systematically varied series of pyrazoloquinolinones.Experimental ApproachRecombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA‐elicited currents by the newly synthesized and reference compounds were investigated by the two‐electrode voltage clamp method.Key ResultsWe identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1–5) subtypes. This modulation was independent of affinity for α+/γ− interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β− interfaces.Conclusion and ImplicationsThese results constitute a major step towards a potential selective positive modulation of certain α6‐containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms.
Burkholderia cenocepacia is an opportunistic Gram-negative pathogen and especially hazardous for cystic fibrosis patients.
Benzodiazepines are clinically relevant drugs that bind to GABAA neurotransmitter receptors at the α+/γ2– interfaces and thereby enhance GABA-induced chloride ion flux leading to neuronal hyperpolarization. However, the structural basis of benzodiazepine interactions with their high-affinity site at GABAA receptors is controversially debated in the literature, and in silico studies led to discrepant binding mode hypotheses. In this study, computational docking of diazepam into α+/γ2– homology models suggested that a chiral methyl group, which is known to promote preferred binding to α5-containing GABAA receptors (position 3 of the seven-membered diazepine ring), could possibly provide experimental evidence that supports or contradicts the proposed binding modes. Thus, we investigated three pairs of R and S isomers of structurally different chemotypes, namely, diazepam, imidazobenzodiazepine, and triazolam derivatives. We used radioligand displacement studies as well as two-electrode voltage clamp electrophysiology in α1β3γ2-, α2β3γ2-, α3β3γ2-, and α5β3γ2-containing GABAA receptors to determine the ligand binding and functional activity of the three chemotypes. Interestingly, both imidazobenzodiazepine isomers displayed comparable binding affinities, while for the other two chemotypes, a discrepancy in binding affinities of the different isomers was observed. Specifically, the R isomers displayed a loss of binding, whereas the S isomers remained active. These findings are in accordance with the results of our in silico studies suggesting the usage of a different binding mode of imidazobenzodiazepines compared to those of the other two tested chemotypes. Hence, we conclude that different chemically related benzodiazepine ligands interact via distinct binding modes rather than by using a common binding mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.