The state of knowledge regarding trends and an understanding of their causes is presented for a specific subset of extreme weather and climate types. For severe convective storms (tornadoes, hailstorms, and severe thunderstorms), differences in time and space of practices of collecting reports of events make using the reporting database to detect trends extremely difficult. Overall, changes in the frequency of environments favorable for severe thunderstorms have not been statistically significant. For extreme precipitation, there is strong evidence for a nationally averaged upward trend in the frequency and intensity of events. The causes of the observed trends have not been determined with certainty, although there is evidence that increasing atmospheric water vapor may be one factor. For hurricanes and typhoons, robust detection of trends in Atlantic and western North Pacific tropical cyclone (TC) activity is significantly constrained by data heterogeneity and deficient quantification of internal variability. Attribution of past TC changes is further challenged by a lack of consensus on the physical link- ages between climate forcing and TC activity. As a result, attribution of trends to anthropogenic forcing remains controversial. For severe snowstorms and ice storms, the number of severe regional snowstorms that occurred since 1960 was more than twice that of the preceding 60 years. There are no significant multidecadal trends in the areal percentage of the contiguous United States impacted by extreme seasonal snowfall amounts since 1900. There is no distinguishable trend in the frequency of ice storms for the United States as a whole since 1950.
Weather and climatic extremes can have serious and damaging effects on human society and infrastructure as well as on ecosystems and wildlife. Thus, they are usually the main focus of attention of the news media in reports on climate. There are some indications from observations concerning how climatic extremes may have changed in the past. Climate models show how they could change in the future either due to natural climate fluctuations or under conditions of greenhouse gas-induced warming. These observed and modeled changes relate directly to the understanding of socioeconomic and ecological impacts related to extremes. This is the first of five papers in the "Understanding Changes in Weather and Climate Extremes" series. The following series of five articles was motivated by a need to develop a more comprehensive assessment of changes in weather and extreme climate events. We were interested not only in the impact of extreme weather and climate events, but whether these events were changing in frequency or intensity along with their impacts. Impacts were viewed in terms of loosely managed ecosystems where wildlife flourishes, as well as socioeconomic systems and more heavily managed ecosystems such as agriculture. From a climate perspective , this included a focus both on the historical record and projections for future change. During the summer of 1998 a group of nearly 30 climate scientists, social scientists, and biologists met for 10 days at the Aspen Global Change Institute to discuss what we now know, and how we could reduce some of our major uncertainties. These articles summarize much of the work during that meeting and new information since the meeting.
Societal impacts from weather and climate extremes, and trends in those impacts, are a function of both climate and society. United States losses resulting from weather extremes have grown steadily with time. Insured property losses have trebled since 1960, but deaths from extremes have not grown except for those due to floods and heat waves. Data on losses are difficult to find and must be carefully adjusted before meaningful assessments can be made. Adjustments to historical loss data assembled since the late 1940s shows that most of the upward trends found in financial losses are due to societal shifts leading to ever-growing vulnerability to weather and climate extremes. Geographical locations of the large loss trends establish that population growth and demographic shifts are the major factors behind the increasing losses from weather-climate extremes. Most weather and climate extremes in the United States do not exhibit steady, multidecadal increases found in their loss values. Without major changes in societal responses to weather and climate extremes, it is reasonable to predict ever-increasing losses even without any detrimental climate changes. Recognition of these trends in societal vulnerability to weather-climate extremes suggests that the present focus on mitigating the greenhouse effect should be complemented by a greater emphasis on adaptation. Identifying and understanding this societal vulnerability has great importance for understanding the nation's economy, in guiding governmental policies, and for planning for future mitigative activities including ways for society to adapt to possible effects of a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.