The Sodium Freezing and Remelting experiment facility at Argonne National Laboratory has been significantly modified and improved. The main improvement was replacement of the two original stainless steel test sections that had strain gages limited by their bonds to the stainless steel to maximum temperatures of 350°C with a single new test section with strain gages that can be utilized up to 980°C and a thin wall to enhance measured strains. Wetting of stainless steel by sodium within a practical time of one to a few days is expected to require temperatures of 450°C or greater. Thus, the higher temperature strain gages enable wetting in a short time of a few days. Wetting below 350°C would have required an impractically long time of at least weeks. Other improvements included upgrading of the loop configuration, incorporation of a cold finger to purify sodium, a new data acquisition system, and reinstallation of the many heaters, heater controllers, and thermocouples. After the loop had been heated to 400°C for about two hours, an initial sodium freezing test was conducted. It is thought that the sodium might have at least partially wetted the stainless steel wall under these conditions. The strain gage measurements indicate that an incremental step inward deformation of the test section thin wall occurred as the temperature decreased through the sodium freezing temperature. This behavior is consistent with sodium initially adhering to the stainless steel inner wall but breaking away from the wall as the freezing sodium contracted. Conduct of additional sodium freezing tests under well wetted conditions was prevented as a result of stoppage of all electrical work at Argonne by the Laboratory Director on July 25, 2017. A pathway to resuming electrical work is now in place at Argonne and additional sodium freezing testing will resume next fiscal year.
PAn experimental setup to measure the thermal contact conductance across a silicon-copper (Si-Cu) interface is described, and the results obtained are presented. The resulting thermal contact resistance data are used in estimating the thermo-mechanical and optical performance of optical substrates cooled by interfaced copper cooling blocks. Several factors influence the heat transfer across solid interfaces. These include the material properties, interface pressure, flatness and roughness of the contacting surfaces, temperature, and interstitial material, if any. Results presented show the variation of thermal contact conductance as a function of applied interface pressure for a Cu-Si interface. Various interstitial materials investigated include indium foil, silver foil and a liquid eutectic (Ga-In-Sn). As expected, thermal contact resistance decreases as interface pressure increases, except in the case of the eutectic, in which it was nearly constant. The softer the interstitial material, the lower the thermal contact resistance. Liquid metal provides the lowest thermal contact resistance across the Cu-Si interface, followed by the indium foil, and then the silver foil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.