Recycled recovered wood, for example, from historic buildings, containing biocides, fire retardants or anti-weather paints is an attractive material for manufacturing composite wood panels which can be used for decoration as well as load-bearing walls with a typical patina. This paper investigates the effect of four inorganic wood preservatives—CuSO4·5H2O, ZnCl2, H3BO3 and (NH4)2SO4—commonly used in the past, with the focus on their effect on the quality of wood bonding. The milled surfaces of Norway spruce (Picea abies Karst L.) wood were treated with 0.5, 1 and 2% aqueous solutions of these preservatives. The effect of preservatives in spruce wood was evaluated: (1) by its wettability with the drops of redistilled water, measuring the contact angles; (2) by the shear strength of the “spruce wood—polyurethane (PUR) Kestopur 1030 glue” interphases according to the standard EN 205; (3) by microscopic analysis of the “wood—PUR” interphases. The wettability of spruce wood worsened when using ZnCl2, by a maximum of 28.2%, but on the contrary, it improved due to other preservatives mainly by using (NH4)2SO4, at a maximum of 22.9%. In general, the shear strength of glued joints “wood—PUR” continually decreased with higher concentrations of all the preservatives. The most significant decrease of adhesion “wood—PUR”, by 19.8% from 10.66 MPa to 8.55 MPa, was caused by 2% ZnCl2 used for the treatment of both spruce wood specimens in interphase with the PUR glue. On the contrary, the less significant decrease of adhesion “wood—PUR”, by 2.5%, was caused by 0.5% (NH4)2SO4 applied only on one surface of the two inter-bonded spruce wood specimens. The effects of preservatives on the wood wettability and its adhesion with PUR glue were partly confirmed by microscopic analysis.
This study deals with the scanning electron microscopy (SEM) analyses of the phase interfaces in the glued joints between Norway spruce wood elements thermally modified at 160, 180, 200, and 220 °C/4 h and polyurethane (PUR) and polyvinyl acetate (PVAc) glues with the aim of evaluating various anatomical influences of wood on the quality of joints. Due to cracked regions created in the surface of spruce wood at severe thermal modifications, the penetration depth of glues doubled from 140 to 241 μm for PUR glue, and from 100 to 200 μm for PVAc glue. The thickness of glue lines in joints was apparently higher for PVAc glue, mainly in earlywood regions; however, in joints from thermally modified (TM) woods it increased more apparently for PUR glue from 16.6 to 44.4 μm, probably in connection with formation of micro-bubbles in its structure. The SEM analyses corresponded well with the previous knowledge about lower shear strength of glued joints formed from the more intensively TM spruce elements and mentioned types of glues.
Glued laminated (glulam) beams are used in the roofs, ceilings and walls of buildings as well as in bridges and towers. At present, with the limitation of tree harvesting, the production of glulam beams from recycled wood sources is implemented with the proviso that their mechanical properties and resistance to pests, fire and weathering will not be aggravated. This work deals with the primary effect of aging Norway spruce wood (Picea abies Karst. L.) lamellas on the moduli of rupture (MOR) and elasticity (MOE) in bending of three-layer glulam beams composed of sound and aged lamellas and polyurethane (PUR) glue. Three methods of lamella aging were used: (A) natural, lasting 60 years in the form of roof trusses with a greater or lesser degree of bio-attack by woodworm (Anobium punctatum De Geer); (B) artificial, caused by increased temperatures from 160 to 220 °C for 4 h; (C) artificial, caused by 2% water solutions of inorganic preservatives, namely, CuSO4 x 5H2O, ZnCl2, H3BO3 or (NH4)2SO4, for 28 days. The lowest MOR values were determined for glulam beams in which all three lamellas or two surface lamellas had a greater degree of bio-attack (60.5 MPa, a decrease of 25.9%) or were exposed to primary aging at 220 °C (62.6 MPa, a decrease of 23.3%). On the contrary, the exposure of lamellas to 160 or 180 °C did not significantly influence the MOR of beams (76.0–82.7 MPa, an average decrease of 1.6%). The MOE of glulam beams ranged from 7540 to 10,432 MPa without an obvious influence of the method of lamella aging or their location in the beams. Linear correlations between the MOR or MOE of glulam beams and the shear strength (σ) of glued joints, if both composite types consisted of similarly aged lamellas, were only slightly significant or insignificant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.