Thermal discomfort is a widespread problem in the built environment, due in part to the variability of individual occupants' thermal preferences. Personal comfort systems (PCS) address this individual variability, and also enable more energy-efficient thermal conditioning in buildings by reducing the need for tight indoor temperature control. This study evaluates a novel approach to PCS that leverages the timedependence of human thermal perception. A 6.25 cm 2 wearable device, Embr Wave, delivers dynamic waveforms of cooling or warming to the inner wrist. In three thermal comfort tests conducted in a climate chamber with N = 49 subjects and temperatures between 20 and 28 ºC, the device exhibited a corrective potential of 2.5 ºC within 3 minutes for both warm and cool populations, while consuming ~1 W of power. The effect is even more pronounced (corrective potential up to 3.3 ºC over periods of 3-and 45-minutes) when subjects are given control of the device's operation. Subjects are found to optimize the device settings for pleasantness, not for the intensity of sensation. These results indicate that this low-power, wearable device improves whole-body thermal sensation, comfort, and pleasantness. It is an appropriate tool for addressing the problem of thermal discomfort in moderate indoor environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.