, ekctronic or mechanical, including phofocopying, recording or any information storage an& retrieval system now known or to be invented, without writfen ~e~i s s i o n~o m the Publisher.
Weather data are used extensively by building scientists and engineers to study the performance of their designs, help compare design alternatives and ensure compliance with building regulations. Given a changing climate, there is a need to provide data for future years so that practising engineers can investigate the impact of climate change on particular designs and examine any risk the commissioning client might be exposed to. In addition, such files are of use to building scientists in developing generic solutions to problems such as elevated internal temperatures and poor thermal comfort. With the publication of the UK Climate Projections (UKCP09) such data can be created for future years up to 2080 and for various probabilistic projections of climate change by the use of a weather generator. Here, we discuss a method for the creation of future probabilistic reference years for use within thermal models. In addition, a comparison is made with the current set of future weather years based on the UKCIP02 projections. When used within a dynamic thermal simulation of a building, the internal environments created by the current set of future weather files lie within the range of the internal environments created by the probabilistic reference years generated by the weather generator. Hence, the main advantages of the weather generator are seen to lie in its potentially greater spatial resolution, its ability to inform risk analysis and that such files, unlike ones based on observed data, carry no copyright. Practical applications: The methodology presented in this article will allow academics and buildings engineers to create realistic hourly future weather files using the future climate data of UKCP09 weather generator. This will allow the creation of consistent future weather years for use in areas such as building thermal simulation.
With a growing global concern about climate change, the building industry is facing the question of how predicted changes in climate will impact on the performance of buildings around the world. This is resulting in a fast-growing field of research that focuses on the adaptation and resilience of buildings to a changing climate. This review paper sets the scene for a special issue of Building and Environment on this subject. It discusses the relationship between climate change and buildings and the emerging body of knowledge on the subject, as well as classifying and summarizing the contributions to this special issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.