The objective of this study is to address the capabilities of multi-temporal optical images to estimate the fine-scale yield variability of wheat, over a study site located in southwestern France. The methodology is based on the Landsat-8 and Sentinel-2 satellite images acquired after the sowing and before the harvest of the crop throughout four successive agricultural seasons, the reflectance constituting the input variables of a statistical algorithm (random forest). The best performances are obtained when the Normalized Difference Vegetation Index (NDVI) is combined with the yield maps collected during the crop rotation, the agricultural season 2014 showing the lower level of performances with a coefficient of determination (R2) of 0.44 and a root mean square error (RMSE) of 8.13 quintals by hectare (q.h−1) (corresponding to a relative error of 12.9%), the three other years being associated with values of R2 close or upper to 0.60 and RMSE lower than 7 q.h−1 (corresponding to a relative error inferior to 11.3%). Moreover, the proposed approach allows estimating the crop yield throughout the agricultural season, by using the successive images acquired from the sowing to the harvest. In such cases, early and accurate yield estimates are obtained three months before the end of the crop cycle. At this phenological stage, only a slight decrease in performance is observed compared to the statistic obtained just before the harvest.
Recent advances in sensors onboard harvesting machines allow accessing the intra-plot variability of yields, spatial scale fully compatible with numerous on-going satellite missions. The aim of this study is to estimate the sunflower yield at the intra-plot spatial scale using the multi-temporal images provided by the Landsat-8 and Sentinel-2 missions. The proposed approach is based on a statistical algorithm, testing different sampling strategies to partition the dataset into independent training and testing sets: A random selection (testing different ratio), a systematic selection (focusing on different plots) and a forecast procedure (using an increasing number of images). Emphasis is put on the use of high spatial and temporal resolution satellite data acquired throughout two agricultural seasons, on a study site located in southwestern France. Ground measurements consist in intra-plot yields collected by a surveying harvesting machine with GPS system on track mode. The forecast of yield throughout the agricultural season provides early accurate estimation two months before the harvest, with R 2 equal to 0.59 or 0.66 and root mean square error (RMSE) of 4.7 or 3.4 q ha −1 , for the agricultural seasons 2016 and 2017 respectively. Results obtained with the random selection or the systematic selection will be developed later, in a longer paper.
The aim of this study is to assess the possibilities of the VNIR (Visible and Near InfraRed) and SWIR (Short Wavelength InfraRed) satellite data for estimating intra-plot patterns of soil electrical resistivity consistent with ground measurements. The methodology is based on optical reflectances that constitute the input variables of random forest, alone or in combination with parameters derived from a digital elevation model (DEM). Over a field located in southwestern France, the results show high level of accuracy for the 0-50 and 0-100 cm soil layers (with R² of 0.69 and 0.59, and a relative RMSE of 18% and 16%, respectively), the performances being lower for the 0-170 cm layer (R² of 0.39, relative RMSE of 20%). The combined use of optical reflectances with parameters derived from the DEM slightly improves the performances, whatever the considered layer. The influence of each reflectance on soil electrical resistivity estimates is finally analyzed, showing that the wavelengths acquired in the SWIR have a relative higher importance than VNIR reflectance.
The objective of this study is to address the capabilities of multi-temporal optical images to estimate the fine-scale yield variability of wheat over a study site located in southwestern France. The methodology is based on the use of Landsat-8 and Sentinel-2 satellite images acquired after the sowing and before the harvest of the crop throughout four successive agricultural seasons, the reflectance constituting the input variables of a statistical algorithm (random forest). The best performances are obtained when the NDVI (Normalized Difference Vegetation Index) is combined with the previous yield maps, the agricultural season 2014 showing the lower level of performances with a R² of 0.44 and a RMSE (Root Mean Square Error) of 8.13 q.h−1 (corresponding to a relative error of 12.9%), the three other years being associated with values of R² close or upper of 0.60 and RMSE lower than 7 q.h−1 (corresponding to a relative error inferior to 11.3%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.