Background The human white matter pathway network is complex and of critical importance for functionality. Thus, learning and understanding white matter tract anatomy is important for the training of neuroscientists and neurosurgeons. The study aims to test and evaluate a new method for fiber dissection using augmented reality (AR) in a group which is experienced in cadaver white matter dissection courses and in vivo tractography. Methods Fifteen neurosurgeons, neurolinguists, and neuroscientists participated in this questionnaire-based study. We presented five cases of patients with left-sided perisylvian gliomas who underwent awake craniotomy. Diffusion tensor imaging fiber tracking (DTI FT) was performed and the language-related networks were visualized separated in different tracts by color. Participants were able to virtually dissect the prepared DTI FTs using a spatial computer and AR goggles. The application was evaluated through a questionnaire with answers from 0 (minimum) to 10 (maximum). Results Participants rated the overall experience of AR fiber dissection with a median of 8 points (mean ± standard deviation 8.5 ± 1.4). Usefulness for fiber dissection courses and education in general was rated with 8 (8.3 ± 1.4) and 8 (8.1 ± 1.5) points, respectively. Educational value was expected to be high for several target audiences (student: median 9, 8.6 ± 1.4; resident: 9, 8.5 ± 1.8; surgeon: 9, 8.2 ± 2.4; scientist: 8.5, 8.0 ± 2.4). Even clinical application of AR fiber dissection was expected to be of value with a median of 7 points (7.0 ± 2.5). Conclusion The present evaluation of this first application of AR for fiber dissection shows a throughout positive evaluation for educational purposes.
The practical management of cavernous angioma located within eloquent brain area before, during and after surgical resection is poorly documented. We assessed the practical pre-operative, intra-operative, and postoperative management of cavernous angioma located within eloquent brain area. Method: An online survey composed of 61 items was sent to 26 centers to establish a multicenter international
BACKGROUND The postoperative outcomes and the predictors of seizure control are poorly studied for supratentorial cavernous angiomas (CA) within or close to the eloquent brain area. OBJECTIVE To assess the predictors of preoperative seizure control, postoperative seizure control, and postoperative ability to work, and the safety of the surgery. METHODS Multicenter international retrospective cohort analysis of adult patients benefitting from a functional-based surgical resection with intraoperative functional brain mapping for a supratentorial CA within or close to eloquent brain areas. RESULTS A total of 109 patients (66.1% women; mean age 38.4 ± 12.5 yr), were studied. Age >38 yr (odds ratio [OR], 7.33; 95% confidence interval [CI], 1.53-35.19; P = .013) and time to surgery > 12 mo (OR, 18.21; 95% CI, 1.11-296.55; P = .042) are independent predictors of uncontrolled seizures at the time of surgery. Focal deficit (OR, 10.25; 95% CI, 3.16-33.28; P < .001) is an independent predictor of inability to work at the time of surgery. History of epileptic seizures at the time of surgery (OR, 7.61; 95% CI, 1.67-85.42; P = .003) and partial resection of the CA and/or of the hemosiderin rim (OR, 12.02; 95% CI, 3.01-48.13; P < .001) are independent predictors of uncontrolled seizures postoperatively. Inability to work at the time of surgery (OR, 19.54; 95% CI, 1.90-425.48; P = .050), Karnofsky Performance Status ≤ 70 (OR, 51.20; 95% CI, 1.20-2175.37; P = .039), uncontrolled seizures postoperatively (OR, 105.33; 95% CI, 4.32-2566.27; P = .004), and worsening of cognitive functions postoperatively (OR, 13.71; 95% CI, 1.06-176.66; P = .045) are independent predictors of inability to work postoperatively. CONCLUSION The functional-based resection using intraoperative functional brain mapping allows safe resection of CA and the peripheral hemosiderin rim located within or close to eloquent brain areas.
Background During resection of intrinsic brain tumors in eloquent areas, particularly under awake mapping, subcortical stimulation is mandatory to avoid irreversible deficits by damaging white fiber tracts. The current practice is to alternate between subcortical stimulation with an appropriate probe and resection of tumoral tissue with an ultrasound aspiration device. Switching between different devices induces supplementary movement and possible tissue trauma, loss of time, and inaccuracies in the localization of the involved area. Objective To use one device for both stimulation as well as a resecting tool. Methods The tip of different ultrasound aspiration devices is currently used for monopolar current transmission (e.g., for vessel coagulation in liver surgery). We use the same circuitry for monopolar subcortical stimulation when connected with the usual stimulator devices. Results We have applied this method since 2004 in over 500 patients during tumor resection with cortical and subcortical stimulation, mostly with awake language and motor monitoring. Conclusion A method is presented using existing stimulation and wiring devices by which simultaneous subcortical stimulation and ultrasonic aspiration are applied with the same tool. The accuracy, safety, and speed of intrinsic intracranial lesion resection can be improved when subcortical stimulation is applied.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.