Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7 days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7 days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7 days.
The Thermo Scientific RapidFinder™ Salmonella Species, Typhimurium, and Enteritidis Multiplex PCR Kit (candidate method) is a real-time PCR assay for the detection and differentiation of Salmonella spp., and the serovars S. Typhimurium, and S. Enteritidis from poultry, pork, and environmental samples. The method was validated in comparison to the U.S. Department of Agriculture Food Safety and Inspection Service and the U.S. Food and Drug Administration reference methods. Thermo Fisher Scientific (Basingstoke, United Kingdom) tested all matrixes. In addition, two matrixes were analyzed independently by Q Laboratories, Inc. (Cincinnati, OH). Few statistically significant differences were found between the candidate and reference methods when analyzed by probability of detection. When differences were observed, these were in favor of the candidate method. All 200 inclusivity strains and none of the 45 exclusivity strains were detected, which demonstrated that the RapidFinder Salmonella Species, Typhimurium, and Enteritidis Multiplex PCR Kit was able to detect all the major groups of Salmonella, the less common subspecies of S. enterica, and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected. Robustness testing demonstrated that the assay gave reliable performance, with specific method deviations outside the recommended parameters. Accelerated stability testing was conducted, validating the assay shelf life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.