a b s t r a c tThis work aimed to define the molecular and chemical signature of a S. palustre clone developed in the framework of the EU-FP7 Mossclone project to improve the standardization and reliability of the mossbag technique. The molecular characterization was performed by a set of DNA molecular markers (RAPD, ISJ, PCR-RFLP, sequencing and microsatellites) to tag the clone produced within the project. Molecular characterization also provided new DNA markers that can be applied in systematic analyses of Sphagnum, and gave new insights to implement well established techniques. The elemental composition of the clone was measured by ICP-MS analysis of 54 major and trace elements, with and without commonly applied pre-exposure treatments (oven devitalization and EDTA washing). Concentrations of almost all analyzed elements were significantly lower (from 10 to 100 times) in the clone than in conspecific field moss, apart from some elements (K, Mo, P and Na) deriving from the culture medium or EDTA treatment. Oven devitalization and EDTA washing did not significantly affect the clone composition. A comparison between the elemental composition of the clone with that of naturally growing Sphagnum species proved the particularly low elemental content of the clone. Therefore, in view of a rigorously standardized moss-bag protocol for the monitoring of persistent atmospheric pollutants, the use of the S. palustre clone, a biomaterial with very low and constant element composition, and homogenous morphological characteristics is strongly recommended.
In recent years, the number of studies concerning population genetics and
phylogenetics in mosses using molecular markers has remarkably grown. This review
summarizes the main features of the most used molecular techniques based on PCR and
their application in bryology, with particular attention to mosses. This work also provides a
bibliographic guide to 108 molecular studies focused on mosses to assist in choosing the
most suitable markers according to the main aims of a specific researc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.