Extracting frequency-derived parameters allows for the identification and characterization of acoustic events, such as those obtained in passive acoustic monitoring applications. Situations where it is difficult to achieve the desired frequency resolution to distinguish between similar events occur, for example, in short time oscillating events. One feasible approach to make discrimination among such events is by measuring the complexity or the presence of non-linearities in a time series. Available techniques include the delay vector variance (DVV) and recurrence plot (RP) analysis, which have been used independently for statistical testing, however, the similarities between these two techniques have so far been overlooked. This work suggests a method that combines the DVV method with the recurrence quantification analysis parameters of the RP graphs for the characterization of short oscillating events. In order to establish the confidence intervals, a variant of the pseudo-periodic surrogate algorithm is proposed. This allows one to eliminate the fine details that may indicate the presence of non-linear dynamics, without having to add a large amount of noise, while preserving more efficiently the phase-space shape. The algorithm is verified on both synthetic and real world time series.
Sleep is a growing area of research interest in medicine and neuroscience. Actually, one major concern is to find a correlation between several physiologic variables and sleep stages. There is a scientific agreement on the characteristics of the five stages of human sleep, based on EEG analysis. Nevertheless, manual stage classification is still the most widely used approach. This work proposes a new automatic sleep classification method based on unsupervised feature classification algorithms recently developed, and on EEG entropy measures. This scheme extracts entropy metrics from EEG records to obtain a feature vector. Then, these features are optimized in terms of relevance using the Q-α algorithm. Finally, the resulting set of features is entered into a clustering procedure to obtain a final segmentation of the sleep stages. The proposed method reached up to an average of 80% correctly classified stages for each patient separately while keeping the computational cost low.
Sample Entropy (SampEn) has been proposed as a method to overcome limitations associated with approximate entropy (ApEn). The initial paper describing the SampEn metric included a characterization study comparing both ApEn and SampEn against theoretical results and concluded that SampEn is both more consistent and agrees more closely with theory for known random processes than ApEn. SampEn has been used in several studies to analyze the regularity of clinical and experimental time series. However, questions regarding how to interpret SampEn in certain clinical situations and its relationship to classical signal parameters remain unanswered. In this paper we report the results of a characterization study intended to provide additional insights regarding the interpretability of SampEn in the context of biomedical signal analysis.
A wildland fire is an uncontrolled fire that occurs mainly in forest areas, although it can also invade urban or agricultural areas. Among the main causes of wildfires, human factors, either intentional or accidental, are the most usual ones. The number and impact of forest fires are expected to grow as a consequence of the global warming. In order to fight against these disasters, it is necessary to adopt a comprehensive, multifaceted approach that enables a continuous situational awareness and instant responsiveness. This paper describes a hierarchical wireless sensor network aimed atearly fire detection in risky areas, integrated with the fire fighting command centres, geographical information systems, and fire simulators. This configuration has been successfully tested in two fire simulations involving all the key players in fire fighting operations: fire brigades, communication systems, and aerial, coordination, and land means.
Two main weaknesses have been identified for permutation entropy (PE): the neglect of subsequence pattern differences in terms of amplitude and the possible ambiguities introduced by equal values in the subsequences. A number of variations or customizations to the original PE method to address these issues have been proposed in the scientific literature recently. Specifically for ties, methods have tried to remove the ambiguity by assigning different weighted or computed orders to equal values. Although these methods are able to circumvent such ambiguity, they can substantially increase the algorithm costs, and a general characterization of their practical effectiveness is still lacking. This paper analyses the performance of PE using several biomedical datasets (electroencephalogram, heartbeat interval, body temperature, and glucose records) in order to quantify the influence of ties on its signal class segmentation capability. This capability is assessed in terms of statistical significance of the PE differences between classes and classification sensitivity and specificity. Being obvious that ties modify the PE results, we hypothesize that equal values are intrinsic to the acquisition process, and therefore, they impact all the classes more or less equally. The experimental results confirm ties are often not the limiting factor for PE, even they can be beneficial as a sort of stochastic resonance, and it can be far more effective to focus on the embedding dimension instead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.