Pyridoxamine inhibits the progression of renal disease, and decreases hyperlipidemia and apparent redox imbalances in diabetic rats. Pyridoxamine and aminoguanidine had similar effects on parameters measured, supporting a mechanism of action involving AGE/ALE inhibition.
Calpains, Ca(2+)-activated cysteine proteases, are cytosolic enzymes implicated in numerous cellular functions and pathologies. We identified a mitochondrial Ca(2+)-inducible protease that hydrolyzed a calpain substrate (SLLVY-AMC) and was inhibited by active site-directed calpain inhibitors as calpain 10, an atypical calpain lacking domain IV. Immunoblot analysis and activity assays revealed calpain 10 in the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix fractions. Mitochondrial staining was observed when COOH-terminal green fluorescent protein-tagged calpain 10 was overexpressed in NIH-3T3 cells and the mitochondrial targeting sequence was localized to the NH(2)-terminal 15 amino acids. Overexpression of mitochondrial calpain 10 resulted in mitochondrial swelling and autophagy that was blocked by the mitochondrial permeability transition (MPT) inhibitor cyclosporine A. With the use of isolated mitochondria, Ca(2+)-induced MPT was partially decreased by calpain inhibitors. More importantly, Ca(2+)-induced inhibition of Complex I of the electron transport chain was blocked by calpain inhibitors and two Complex I proteins were identified as targets of mitochondrial calpain 10, NDUFV2, and ND6. In conclusion, calpain 10 is the first reported mitochondrially targeted calpain and is a mediator of mitochondrial dysfunction through the cleavage of Complex I subunits and activation of MPT.
Aging is associated with abnormalities in kidney function, but the exact mechanisms are unknown. We examined calpains 1, 2, and 10 protein levels in kidneys from rats, mice, and humans of various ages and determined whether calpain 10 is required for cell viability. Calpain 10 protein expression decreased in the kidney, but not in the liver, of aging Fischer 344 rats, and this decrease was attenuated with caloric restriction. There was no change in calpains 1 or 2 levels in the kidney or liver in control and caloric-restricted aging rats. Aging mice also exhibited decreased calpain 10 protein levels. Calpain 10 protein and mRNA levels decreased linearly in human kidney samples with age in the absence of changes in calpains 1 or 2. Our laboratory previously found calpain 10 to be expressed in both the cytosol and mitochondria of rabbit renal proximal tubular cells (RPTC). Adenoviral-delivered shRNA to rabbit RPTC decreased mitochondrial calpain 10 expression below detectable levels by 3 days while cytosolic calpain 10 levels remained unchanged at 3 days and decreased to approximately 20% of control by 5 days. Knockdown of mitochondrial calpain 10 resulted in nuclear condensation and cleaved procaspase 3, markers of apoptosis. In summary, mitochondrial calpain 10 is required for cell viability and calpain 10 levels specifically decrease in aging rat, mice, and human kidney tissues when renal function decreases, suggesting that calpain 10 is required for renal function and is a biomarker of the aging kidney.
Arrington DD, Schnellmann RG. Targeting of the molecular chaperone oxygen-regulated protein 150 (ORP150) to mitochondria and its induction by cellular stress. Am J Physiol Cell Physiol 294: C641-C650, 2008. First published December 19, 2007 doi:10.1152/ajpcell.00400.2007 is an inducible endoplasmic reticulum (ER) chaperone molecule that is upregulated after numerous cellular insults and has a cytoprotective role in renal, neural, and cardiac models of ischemiareperfusion injury. ORP150 also has been shown to play a role in cellular Ca 2ϩ homeostasis, and in turn, regulating calpain activity. In this study, we identified ORP150 in whole rat renal cortical mitochondria and matrix fractions, demonstrated the targeting of an ORP150-GFP construct to the mitochondria of NIH-3T3 cells, and showed that the NH2-terminal 13 amino acids of ORP150 are sufficient for this translocation. ORP150 expression was found to be regulated by the anti-C/enhancer-binding protein homologous protein (CHOP)/ GADD153 transcription factor and ORP150 levels increased in the mitochondria and ER of COS-7 cells after diverse stresses, including hypoxia, serum starvation, prolyl hydroxylase inhibition with dimethyloxaloylglycine, and exposure to tunicamycin, ethidium, bromide, and 2-deoxyglucose. Induction of the mitochondrial specific stress response in COS-7 cells through expression of an ornithine transcarbamylase mutant (⌬OTC) increased mitochondrial ORP150 levels and mitochondrial calpain activity. To determine whether mitochondrial ORP150 and mitochondrial calpain 10 interact, rat cortical mitochondria exposed to Ca 2ϩ resulted in ORP150 cleavage in a calpain inhibitor-dependent manner, revealing that ORP150 is a substrate and may be regulated by calpain 10. These data reveal a novel cellular localization for ORP150 and that mitochondrial ORP150 is upregulated by CHOP/GADD153 in response to mitochondrial and ER stress. Our data also reveal that ORP150 is a substrate for mitochondrial calpain 10.
Calpain 10 has been localized to the mitochondria and is a key mediator of Ca 2+ induced mitochondrial dysfunction. A peptide screen followed by a series of modifications identified the homodisulfide form of CYGAK (CYGAK) 2 as an inhibitor of calpain 10, while showing no inhibitory activity against calpain 1. Methylation or truncation of the N-terminal cysteine significantly reduced the inhibitory activity of (CYGAK) 2 and inhibition was reversed by reducing agents, suggesting that CYGAK forms a disulfide with a cysteine near the active site. Data suggests CYGAK may be a P' calpain inhibitor and may achieve its specificity through this mechanism. CYGAK inhibited calpain activity in intact mitochondria, renal cells, and hepatocytes, prevented Ca 2+ induced cleavage of NDUFV2, and blocked Ca 2+ induced state III dysfunction. (CYGAK) 2 is the first P' specific calpain inhibitor and will be a valuable tool to prevent Ca 2+ induced mitochondrial dysfunction and explore the function of calpain 10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.