In this paper we define a new object, the momentum amplituhedron, which is the long sought-after positive geometry for tree-level scattering amplitudes in N = 4 super Yang-Mills theory in spinor helicity space. Inspired by the construction of the ordinary amplituhedron, we introduce bosonized spinor helicity variables to represent our external kinematical data, and restrict them to a particular positive region. The momentum amplituhedron M n,k is then the image of the positive Grassmannian via a map determined by such kinematics. The scattering amplitudes are extracted from the canonical form with logarithmic singularities on the boundaries of this geometry.
In this paper we study a relation between two positive geometries: the momen- tum amplituhedron, relevant for tree-level scattering amplitudes in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar φ3 theory. We study the implications of restricting the latter to four spacetime dimensions and give a direct link between its canonical form and the canonical form for the momentum amplituhedron. After removing the little group scaling dependence of the gauge theory, we find that we can compare the resulting reduced forms with the pull-back of the associahedron form. In particular, the associahedron form is the sum over all helicity sectors of the reduced momentum amplituhedron forms. This relation highlights the common sin- gularity structure of the respective amplitudes; in particular, the factorization channels, corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we also find a relation between these canonical forms directly on the kinematic space of the scalar theory when reduced to four spacetime dimensions by Gram determinant constraints. As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant for the four-dimensional gauge and scalar theories, and provide direct links between them.
In recent years, it has been understood that color-ordered scattering amplitudes can be encoded as logarithmic differential forms on positive geometries. In particular, amplitudes in maximally supersymmetric Yang-Mills theory in spinor helicity space are governed by the momentum amplituhedron. Due to the group-theoretic structure underlying color decompositions, color-ordered amplitudes enjoy various identities which relate different orderings. In this paper, we show how the Kleiss-Kuijf relations arise from the geometry of the momentum amplituhedron. We also show how similar relations can be realised for the kinematic associahedron, which is the positive geometry of bi-adjoint scalar cubic theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.