Driver visibility from commercial vehicles is often an issue in post-accident litigation. While the visibility through the windows of most vehicles is restricted due to the required structure of the vehicle itself, most manufacturers and users incorporate a series of mirrors to enhance driver visibility and to reduce blind spots. The challenge for an engineer is to first demonstrate what the driver could see to a reasonable degree of engineering certainty, and then to convey this information in a form that is easy for the lay person to grasp. This paper outlines procedures for calculating and modeling the driver visibility from commercial vehicles. The primary techniques presented require access to the vehicle, although the paper also presents techniques by which visibility can be analyzed through photogrammetry and 3-D computer models, both for the vehicle and for any mirrors incorporated onto the vehicle. Finally, this paper presents several techniques which have been used successfully to convey visibility information to adjusters and juries.
<div class="section abstract"><div class="htmlview paragraph">Accidents involving heavy trucks turning left across travel lanes of a roadway are common subjects of investigation in the field of accident reconstruction. The distance traversed during a turn and lateral and tangential accelerations of the left turning heavy truck can be used to model its motion and determine timing as it relates to a collision. As a follow up to the 2019 SAE Accident Reconstruction section paper by the authors (2019-01-0411), this paper will investigate the longitudinal and lateral accelerations of heavy trucks during small, medium, and large radius turns and analyze peak and average lateral accelerations as they relate to turn radius and vehicle speeds. This study analyzed 70 tractor-trailers, 19 straight trucks and 15 bobtail tractors for a total of 104 heavy trucks. The tractor-trailers had various trailer configurations ranging from flat bed, box and tanker, while the straight trucks are defined as non-articulated heavy trucks with various body configurations such as box, garbage, and cement trucks.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.