The plane of cell division is defined by the final position of the mitotic spindle. The spindle is pulled and rotated to the correct position by cortical dynein. However, it is unclear how the spindle's rotational center is maintained and what the consequences of an equatorially off centered spindle are in human cells. We analyzed spindle movements in 100s of cells exposed to protein depletions or drug treatments and uncovered a novel role for MARK2 in maintaining the spindle at the cell's geometric center. Following MARK2 depletion, spindles glide along the cell cortex, leading to a failure in identifying the correct division plane. Surprisingly, spindle off centering in MARK2-depleted cells is not caused by excessive pull by dynein. We show that MARK2 modulates mitotic microtubule growth and length and that codepleting mitotic centromere-associated protein (MCAK), a microtubule destabilizer, rescues spindle off centering in MARK2-depleted cells. Thus, we provide the first insight into a spindle-centering mechanism needed for proper spindle rotation and, in turn, the correct division plane in human cells.
To address the rapidly growing use of probiotics in animal agriculture, this review discusses the effect of probiotics on animal growth and development, immune response, and productivity. Several benefits have been associated with the use of probiotics in farm animals, such as improved growth and feed efficiency, reduced mortality, and enhanced product quality. While the mechanisms through which probiotics induce their beneficial effects are not well understood, their role in modifying the gastrointestinal microbiota is believed to be the main mechanism. The use of probiotics in fresh and fermented meat products has been also shown to reduce pathogenic and spoilage microorganisms and improve sensory characteristics. Although many benefits have been associated with the use of probiotics, their effectiveness in improving animal performance and product quality is highly variable. Factors that dictate such variability are dependent on the probiotic strain being utilized and its stability during storage and administration/inoculation, frequency and dosage, nutritional and health status as well as age of the host animal. Therefore, future research should focus on finding more effective probiotic strains for the desired use and identifying the optimum dose, administration time, delivery method, and mechanism of action for each strain/host.
Objective. Autoantibodies to DNA topoisomerase I (topo I) are associated with diffuse systemic sclerosis (SSc), appear to be antigen driven, and may be triggered by cryptic epitopes exposed during in vivo topo I fragmentation. These autoantibodies recognize topo I and fragments of this autoantigen generated during apoptosis and necrosis. We undertook this study to determine whether lysosomal cathepsins are involved in topo I fragmentation during necrosis.Methods. Topo I cleavage during necrosis was assessed by immunoblotting of lysates from L929 fibroblasts exposed to tumor necrosis factor ␣ (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.