SummaryReactive oxygen species (ROS) are potentially toxic, but they are also signaling molecules that modulate aging. Recent observations that ROS can promote longevity have to be reconciled with the numerous claims about the benefits of antioxidants on lifespan. Here, three antioxidants [N‐acetylcysteine (NAC), vitamin C, and resveratrol (RSV)] were tested on Caenorhabditis elegans mutants that alter drug uptake, mitochondrial function, and ROS metabolism. We observed that like pro‐oxidants, antioxidants can both lengthen and shorten lifespan, dependent on concentration, genotypes, and conditions. The effects of antioxidants thus reveal an inverted U‐shaped dose–response relationship between ROS levels and lifespan. In addition, we observed that RSV can act additively to both NAC and paraquat, to dramatically increase lifespan. This suggests that the effect of compounds that modulate ROS levels can be additive when their loci of action or mechanisms of action are sufficiently distinct.
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously. Developmental Dynamics 239:1365-1377,
Mammalian bile acids (BAs) are oxidized metabolites of cholesterol whose amphiphilic properties serve in lipid and cholesterol uptake. BAs also act as hormone-like substances that regulate metabolism. The Caenorhabditis elegans clk-1 mutants sustain elevated mitochondrial oxidative stress and display a slow defecation phenotype that is sensitive to the level of dietary cholesterol. We found that: 1) The defecation phenotype of clk-1 mutants is suppressed by mutations in tat-2 identified in a previous unbiased screen for suppressors of clk-1. TAT-2 is homologous to ATP8B1, a flippase required for normal BA secretion in mammals. 2) The phenotype is suppressed by cholestyramine, a resin that binds BAs. 3) The phenotype is suppressed by the knock-down of C. elegans homologues of BA–biosynthetic enzymes. 4) The phenotype is enhanced by treatment with BAs. 5) Lipid extracts from C. elegans contain an activity that mimics the effect of BAs on clk-1, and the activity is more abundant in clk-1 extracts. 6) clk-1 and clk-1;tat-2 double mutants show altered cholesterol content. 7) The clk-1 phenotype is enhanced by high dietary cholesterol and this requires TAT-2. 8) Suppression of clk-1 by tat-2 is rescued by BAs, and this requires dietary cholesterol. 9) The clk-1 phenotype, including the level of activity in lipid extracts, is suppressed by antioxidants and enhanced by depletion of mitochondrial superoxide dismutases. These observations suggest that C. elegans synthesizes and secretes molecules with properties and functions resembling those of BAs. These molecules act in cholesterol uptake, and their level of synthesis is up-regulated by mitochondrial oxidative stress. Future investigations should reveal whether these molecules are in fact BAs, which would suggest the unexplored possibility that the elevated oxidative stress that characterizes the metabolic syndrome might participate in disease processes by affecting the regulation of metabolism by BAs.
Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H 2 0 2 , enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H 2 0 2 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.
L’année 2018 marque les 105 ans de la présence militaire sur le site de la base aérienne d’Évreux. Cent cinq ans de présence mais également cent cinq ans d’innovation. De la halte Bellenger à la base aérienne 105, l’aviation est au centre du développement d’Évreux et de ses alentours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.