Modern 3D laser-range scanners have a high data rate, making online simultaneous localization and mapping (SLAM) computationally challenging. Recursive state estimation techniques are efficient but commit to a state estimate immediately after a new scan is made, which may lead to misalignments of measurements. We present a 3D SLAM approach that allows for refining alignments during online mapping. Our method is based on efficient local mapping and a hierarchical optimization back-end. Measurements of a 3D laser scanner are aggregated in local multiresolution maps by means of surfel-based registration. The local maps are used in a multi-level graph for allocentric mapping and localization. In order to incorporate corrections when refining the alignment, the individual 3D scans in the local map are modeled as a sub-graph and graph optimization is performed to account for drift and misalignments in the local maps. Furthermore, in each sub-graph, a continuous-time representation of the sensor trajectory allows to correct measurements between scan poses. We evaluate our approach in multiple experiments by showing qualitative results. Furthermore, we quantify the map quality by an entropy-based measure.
Robots that solve complex tasks in environments too dangerous for humans to enter are desperately needed, e.g., for search and rescue applications. We describe our mobile manipulation robot Momaro, with which we participated successfully in the DARPA Robotics Challenge. It features a unique locomotion design with four legs ending in steerable wheels, which allows it both to drive omnidirectionally and to step over obstacles or climb. Furthermore, we present advanced communication and teleoperation approaches, which include immersive three-dimensional (3D) visualization, and 6D tracking of operator head and arm motions. The proposed system is evaluated in the DARPA Robotics Challenge, the DLR SpaceBot Cup Qualification, and lab experiments. We also discuss the lessons learned from the competitions. C 2016 Wiley Periodicals, Inc.
Abstract-Time-of-Flight cameras constitute a smart and fast technology for 3D perception but lack in measurement precision and robustness. The authors present a comprehensive approach for 3D environment mapping based on this technology. Imprecision of depth measurements are properly handled by calibration and application of several filters. Robust registration is performed by a novel extension to the Iterative Closest Point algorithm. Remaining registration errors are reduced by global relaxation after loop-closure and surface smoothing. A laboratory ground truth evaluation is provided as well as 3D mapping experiments in a larger indoor environment.
et al.: 3D Mapping with Time-of-Flight Cameras • 935(SLAM) tasks. Although ToF cameras are in principle an attractive type of sensor for threedimensional (3D) mapping owing to their high rate of frames of 3D data, two features make them difficult as mapping sensors, namely, their restricted field of view and influences on the quality of range measurements by high dynamics in object reflectivity; in addition, currently available models suffer from poor data quality in a number of aspects. The paper first summarizes calibration and filtering approaches for improving the accuracy, precision, and robustness of ToF cameras independent of their intended usage. Then, several ego motion estimation approaches are applied or adapted, respectively, in order to provide a performance benchmark for registering ToF camera data. As a part of this, an extension to the iterative closest point algorithm has been developed that increases the robustness under restricted field of view and under larger displacements. Using an indoor environment, the paper provides results from SLAM experiments using these approaches in comparison. It turns out that the application of ToF cameras is feasible to SLAM tasks, although this type of sensor has a complex error characteristic. C 2009 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.