Low-velocity, shock-free impact is one of the accidental loads that can lead to a thermal explosion, the latter being the consequence of a chain of mechanisms depending on the microstructure of the material. To investigate the causes, the predictive capability of numerical tools depends on the physics embedded in the models. While a consensus has developed around the concept of hot spots, the exact nature of the thermo-mechanical heat-generating processes that preceded them remains to be clarified. We are studying a composition similar to the PBX 9501. HMX crystals are mixed with a few percent of a polymer binder. Recent experiments (reverse edge-on impact test) have revealed the influence of the plasticity of HMX grains even at low strain rates and low confinement. The heat released by the plastic dissipation has been identified as a potential candidate for the formation of hot spots. In this study, a numerical representation based on a polycrystalline β-HMX material subjected to intense shear is presented. Due to the high pressure generated by the impact, the intergranular slip is ignored. Emphasis is placed on the heterogeneity resulting from the micro-structural characteristics and the interaction between the anisotropic single crystals. The behavior of the binder and the influence of other heterogeneities such as friction or micro cracks are set aside. Finally, the mechanical dissipation is calculated in the models and the maximum temperature is deduced.
Constitutive equationsThe XF explosive family from NEXTER Munitions relies on a melt cast formulation with a TNT matrix. Melt cast formulations provide a high‐volume ratio of energetic filler material to matrix. This might affect the mechanical response of the material and its damage process. Therefore, a laboratory study has been launched to improve the knowledge of the mechanical behavior of this family of energetic materials. To mimic the conditions observed by the material inside ammunition, we chose to adapt a passive confinement method to the pyrotechnic conditions of the XF‐11585. This relies on an elastic‐perfectly plastic ring that gives us access to the shear behavior for different loadings in quasi‐static regime. This setup allowed us to investigate the physical phenomena involved under both pressure and shear. Then, based on the results obtained, we built an isotropic elastic damage model. This macroscopic modeling of damage is meant to be simple but complex enough to provide an assessment of the material degradation.
To manufacture its insensitive munitions (MURAT MUnitions à Risque ATténué), NEXTER Munitions uses a melt cast explosives as an EIDS (Extremely Insensitive Detonating Substance). Unlike commonly used and well-documented EIDSs such as PBX, melt cast have a high volumetric matrix percentage. Moreover, in its life cycle, the ammunition can undergo severe loads, such as cannon firing, accidental shocks and terminal ballistics events. The objective of this paper is therefore to analyse, how these dynamic loads induce changes in the material (damage, cracking, de-cohesion), and then, to evaluate how these alterations influence the pyrotechnic properties of the melt cast explosive. To address the first point, we delimited the scope of the study in pressure and strain rate ranges which corresponds to the context of the ammunition. To safely explore this area, we have created an inert material that is morphologically and mechanically representative of the melt case explosive. It is used to setup and validate the experimental technic that will be applied to damage the melt cast explosive in the future. In this article the mechanical behaviour of the inert material is investigated under simple compression and passive confinement. This was done under the quasi-static and dynamic regimes thanks to a compression press and a Split Hopkinson Pressure Bars setup. Firstly, the results obtained show the emergence of a damage which increases with the loss of cohesion of the material during the test. This seems to be related to the extension strain. Then, for all tests, a strain rate dependent mechanical response is observed. Finally, the end of the test shows the material behaviour without cohesion. Then, a rate dependent ultimate shear criterion is deduced. To complete the interpretation these results, a model is proposed. It intends to be simple as it tries to describe the whole degradation of the material with a unique scalar parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.