The DARPA Urban Challenge required robotic vehicles to travel more than 90 km through an urban environment without human intervention and included situations such as stop intersections, traffic merges, parking, and roadblocks. Team VictorTango separated the problem into three parts: base vehicle, perception, and planning. A Ford Escape outfitted with a custom drive-by-wire system and computers formed the basis for Odin. Perception used laser scanners, global positioning system, and a priori knowledge to identify obstacles, cars, and roads. Planning relied on a hybrid deliberative/reactive architecture to Robotics-2008 analyze the situation, select the appropriate behavior, and plan a safe path. All vehicle modules communicated using the JAUS (Joint Architecture for Unmanned Systems) standard. The performance of these components in the Urban Challenge is discussed and successes noted. The result of VictorTango's work was successful completion of the Urban Challenge and a third-place finish. C 2008 Wiley Periodicals, Inc.
High-frequency multimegawatt polyphase resonant power conditioning techniques have recently been realized as a result of key component developments, cooperative efforts, research and development funding contracts, and newly applied engineering techniques. The first generation 10-MW pulsed converter-modulators, implemented at Los Alamos National Laboratory, Los Alamos, NM, are now utilized for the Oak Ridge National Laboratory, Oak Ridge, TN, Spallation Neutron Source (SNS) accelerator klystron radio frequency amplifier power systems [1]. Three different styles of polyphase resonant converter-modulators were developed for the SNS application. The various systems operate up to 140-kV, or 11-MW pulses, or up to 1.1 MW average power, all from a direct current input of + 1.2 kV. The component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in overall power conditioning topology. As an example, the 20-kHz high-voltage transformers are less than 1% the size and weight of equivalent 60-Hz versions. With resonant conversion techniques, load protective networks are not required.A shorted load de-tunes the resonance which results in limited power transfer. This provides for power conditioning systems that are inherently self-protective, with automatic fault "ride-through" capabilities. By altering and iterating the Los Alamos design, higher power and continuous wave power conditioning systems can now be realized with improved performance and flexibility. This paper will examine the SNS engineering data, briefly review the underlying theory of polyphase resonant conversion techniques, and apply this knowledge to future system topologies.
Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.