The vestibular system of the inner ear is responsible for the perception of motion and gravity. Key elements of this organ are otoconia, tiny biomineral particles in the utricle and the saccule. In response to gravity or linear acceleration, otoconia deflect the stereocilia of the hair cells, thus transducing kinetic movements into sensorineural action potentials. Here, we present an allelic series of mutations at the otoconia-deficient head tilt (het) locus, affecting the gene for NADPH oxidase 3 (Nox3). This series of mutations identifies for the first time a protein with a clear enzymatic function as indispensable for otoconia morphogenesis.
We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.
In humans, hereditary inactivation of either p22 phox or gp91 phox leads to chronic granulomatous disease (CGD), a severe immune disorder characterized by the inability of phagocytes to produce bacteria-destroying ROS. Heterodimers of p22 phox and gp91 phox proteins constitute the superoxide-producing cytochrome core of the phagocyte NADPH oxidase. In this study, we identified the nmf333 mouse strain as what we believe to be the first animal model of p22 phox deficiency. Characterization of nmf333 mice revealed that deletion of p22 phox inactivated not only the phagocyte NADPH oxidase, but also a second cytochrome in the inner ear epithelium. As a consequence, mice of the nmf333 strain exhibit a compound phenotype consisting of both a CGD-like immune defect and a balance disorder caused by the aberrant development of gravity-sensing organs. Thus, in addition to identifying a model of p22 phox -dependent immune deficiency, our study indicates that a clinically identifiable patient population with an otherwise cryptic loss of gravity-sensor function may exist. Thus, p22 phox represents a shared and essential component of at least 2 superoxide-producing cytochromes with entirely different biological functions. The site of p22 phox expression in the inner ear leads us to propose what we believe to be a novel mechanism for the control of vestibular organogenesis.
Although enhancers can exert their influence over great distances, their effect is generally limited to a single gene. To discern the mechanism by which this constraint can be mediated, we have studied three neighboring Drosophila genes: decapentaplegic (dpp), SLY1 homologous (Slh) and out at first (oafl. Several dpp enhancers are positioned close to Slh and oaf, and yet these genes are unaffected by the dpp elements. However, when a transposon is located within the oaf gene, the dpp enhancers activate the more distant transposon promoters while still ignoring the closer Slh and oaf start sites. To test whether this promoter specificity accounts for the regulatory autonomy normally found for the three genes, we used in vivo gene targeting to replace the oaf promoter with a dpp-compatible one in an otherwise normal chromosome. Strikingly, this chimeric gene is now activated by the dpp enhancers. Thus, the properties of the promoters themselves are sufficient to mediate the autonomous regulation of genes in this region.
Mutations of the otoferlin gene have been shown to underlie deafness disorders in humans and mice. Analysis of genetically engineered mice lacking otoferlin have demonstrated an essential role for this protein in vesicle exocytosis at the inner hair cell afferent synapse. Here, we report on the molecular and phenotypic characterization of a new ENU-induced missense mutation of the mouse otoferlin gene designated Otof deaf5Jcs . The mutation is a single T to A base substitution in exon 10 of Otof that causes a non-conservative amino acid change of isoleucine to asparagine in the C2B domain of the protein. Although strong immunoreactivity with an otoferlin-specific antibody was detected in cochlear hair cells of wild type mice, no expression was detected in mutant mice, indicating that the missense mutation has a severe effect on the stability of the protein and potentially its localization. Auditory brainstem response (ABR) analysis demonstrated that mice homozygous for the missense mutation are profoundly deaf, consistent with an essential role for otoferlin in inner hair cell neurotransmission. Vestibular-evoked potentials (VsEPs) of mutant mice, however, were equivalent to those of wild type mice, indicating that otoferlin is unnecessary for vestibular function even though it is highly expressed in both vestibular and cochlear hair cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.