We describe data structures for representing simplicial meshes compactly while supporting online queries and updates efficiently. Our data structure requires about a factor of five less memory than the most efficient standard data structures for triangular or tetrahedral meshes, while efficiently supporting traversal among simplices, storing data on simplices, and insertion and deletion of simplices. Our implementation of the data structures uses about 5 bytes/triangle in two dimensions (2D) and 7.5 bytes/tetrahedron in three dimensions (3D). We use the data structures to implement 2D and 3D incremental algorithms for generating a Delaunay mesh. The 3D algorithm can generate 100 Million tetrahedra with 1 Gbyte of memory, including the space for the coordinates and all data used by the algorithm. The runtime of the algorithm is as fast as Shewchuk's Pyramid code, the most efficient we know of, and uses a factor of 3.5 less memory overall.
Two sets of points in d-dimensional space are given: a data set D consisting of N points, and a pattern set or probe P consisting of k points. We address the problem of determining whether there is a transformation, among a specified group of transformations of the space, carrying P into or near (meaning at a small directed Hausdorff distance of) D. The groups we consider are translations and rigid motions.Runtimes of approximately On log n and On d log n respectively are obtained (letting n = maxfN;kg and omitting the effects of several secondary parameters). For translations, a runtime of approximately Onak + 1 log 2 n is obtained for the case that a constant fraction a 1 of the points of the probe is allowed to fail to match.
We present a new framework for maintaining the quality of two dimensional triangular moving meshes. The use of curved elements is the key idea that allows us to avoid excessive refinement and still obtain good quality meshes consisting of a low number of well shaped elements. We use B-splines curves to model object boundaries, and objects are meshed with second order Bézier triangles. As the mesh evolves according to a non-uniform flow velocity field, we keep track of object boundaries and, if needed, carefully modify the mesh to keep it well shaped by applying a combination of vertex insertion and deletion, edge flipping, and edge smoothing operations at each time step. Our algorithms for these tasks are extensions of known algorithms for meshes built of straight-sided elements and are designed for any fixed-order Bézier elements and B-splines. Although in this work we have concentrated on quadratic elements, most of the operations are valid for elements of any order and they generalize well to higher dimensions. We present results of our scheme for a set of objects mimicking red blood cells subject to a precomputed flow velocity field.
Abstract.A new topological representation of surfaces in higher dimensions, "cell-chains" is developed. The representation is a generalization of Brisson's cell-tuple data structure. Cell-chains are identical to celltuples when there are no degeneracies: cells or simplices with identified vertices. The proof of correctness is based on axioms true for maps, such as those in Brisson's cell-tuple representation. A critical new condition (axiom) is added to those of Lienhardt's n-G-maps to give "cell-maps". We show that cell-maps and cell-chains characterize the same topological representations.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.