In an energy‐limited world, biomass may be converted to energy products through pyrolysis. A byproduct of this process is biochar. A better understanding is needed of the sorption characteristics of biochars, which can influence the availability of plant essential nutrients and potential water contaminants such as phosphorus (P) in soil. Knowledge of P retention and release mechanisms when applying carbon‐rich amendments such as biochar to soil is needed. The objectives of this study were to quantify the P sorption and availability from biochars produced from the fast pyrolysis of corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.). We determined the impact of biochar application to soils with different chemical characteristics on P sorption and availability. Sorption of P by biochars and soil–biochar mixtures was studied by fitting the equilibrium solution and sorbed concentrations of P using Freundlich and Langmuir isotherms. Biochar produced from Ponderosa pine wood residue had very different chemical characteristics than corn stover and switchgrass. Corn stover biochar had the highest P sorption (in average 79% of the initial solution P concentration) followed by switchgrass biochar (in average 76%) and Ponderosa pine wood residue biochar (in average 31%). Ponderosa pine wood residue biochar had higher bicarbonate extractable (available) P (in average 43%) followed by switchgrass biochar (33% of sorbed P) and corn stover biochar (25% of sorbed P). The incorporation of biochars to acidic soil at 40 g/kg (4%) increased the equilibrium solution P concentration (reduced the sorption) and increased available sorbed P. In calcareous soil, application of alkaline biochars (corn stover and switchgrass biochars) significantly increased the sorption of P and decreased the availability of sorbed P. Biochar effects on soil P was aligned with their chemical composition and surface characteristics.
A gronomy J our n al • Volume 10 0 , I s sue 3 • 2 0 0 8 551 ABSTRACT To improve site-specifi c N recommendations a more complete understanding of the mechanisms responsible for synergistic relationships between N and water is needed. Th e objective of this research was to determine the infl uence of soil water regime on the ability of corn (Zea mays L.) to use N derived from fertilizer and soil. A randomized split-block experiment was conducted in 2002, 2003, and 2004. Soil at the site was a Brandt silty clay loam (fi ne-silty, mixed, superactive frigid Calcic Hapludoll). Blocks were split into moderate (natural rainfall) and high (natural + supplemental irrigation) water regimes. Nitrogen rates were 0, 56, 112, and 168 kg urea-N ha -1 that was surface applied. Water, soil N, and N fertilizer use effi ciencies were determined. Plant utilization of soil N was determined by mass balance in the unfertilized control plots and by using the δ 15 N approach in fertilized plots. Findings showed that: (i) plants responded to N and water simultaneously; (ii) N fertilizer increased water use effi ciency (170 kg vs. 223 kg grain cm -1 in 0 and 112 kg N ha -1 treatments, respectively); and (iii) water increased the ability of corn to use N derived from soil (67.7 and 61.6% effi cient in high and moderate water regimes, respectively, P = 0.002) and fertilizer (48 and 44% effi cient in high and moderate water regimes, respectively, P = 0.10). Higher N use effi ciency in the high water regime was attributed to two interrelated factors. First, total growth and evapotranspiration (ET) were higher in the high than the moderate water regime. Second, N transport to the root increased with water transpired. For precision farming, results indicate that: (i) the amount of N fertilizer needed to produce a kg of grain is related to the yield loss due to water stress; and (ii) the rate constant used in yield goal equations can be replaced with a variable.
Residue cover influences temperature and water gradients in the soil profile. Changes in the physical environment of the soil influence NH3 volatilization from urea‐containing fertilizers. Field and laboratory experiments were conducted to investigate the influence of residue‐cover‐induced changes in soil water and temperature on NH3 volatilization as impacted by urea treatment with a nitrification and urease inhibitor. Fertilizer treatments were urea, urea plus dicyandiamide (DCD), urea plus N‐(n‐butyl)thiophosphoric triamide (NBPT), and urea plus NBPT and DCD. Following fertilizer application, the soil was either left bare or covered with corn (Zea mays L.) residue. Every 3 h over a 4‐d period, water potential, soil temperature, CO2 production, and NH3 volatilization were measured. The influence of fertilizer treatments on soil pH was determined in a laboratory incubation experiment conducted over 8 d under controlled environmental conditions. Treatments were similar to the field experiment, with NH3 volatilization, pH, and CO2 production measured daily. The NH3‐volatilization rate in the field was highest 2 d after urea application at a time that corresponded with daily maximum soil temperature and decreasing soil water content. Residue cover reduced NH3 volatilization. Volatilization of NH3 as a result of urea application was not increased when urea was treated with DCD. Ammonia volatilization as a result of urea treatment with NBPT was reduced by 100 times over untreated urea. During an incubation experiment, soil pH increased from 6.5 to 7.2 in the urea‐NBPT, and from 6.5 to 9.0 in the urea and urea‐DCD treatments. Associated with the pH increase in the urea‐NBPT treatment was a reduction in CO2 production when compared with the untreated soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.