BACKGROUNDTransthyretin amyloidosis, also called ATTR amyloidosis, is a life-threatening disease characterized by progressive accumulation of misfolded transthyretin (TTR) protein in tissues, predominantly the nerves and heart. NTLA-2001 is an in vivo gene-editing therapeutic agent that is designed to treat ATTR amyloidosis by reducing the concentration of TTR in serum. It is based on the clustered regularly interspaced short palindromic repeats and associated Cas9 endonuclease (CRISPR-Cas9) system and comprises a lipid nanoparticle encapsulating messenger RNA for Cas9 protein and a single guide RNA targeting TTR. METHODSAfter conducting preclinical in vitro and in vivo studies, we evaluated the safety and pharmacodynamic effects of single escalating doses of NTLA-2001 in six patients with hereditary ATTR amyloidosis with polyneuropathy, three in each of the two initial dose groups (0.1 mg per kilogram and 0.3 mg per kilogram), within an ongoing phase 1 clinical study. RESULTSPreclinical studies showed durable knockout of TTR after a single dose. Serial assessments of safety during the first 28 days after infusion in patients revealed few adverse events, and those that did occur were mild in grade. Dose-dependent pharmacodynamic effects were observed. At day 28, the mean reduction from baseline in serum TTR protein concentration was 52% (range, 47 to 56) in the group that received a dose of 0.1 mg per kilogram and was 87% (range, 80 to 96) in the group that received a dose of 0.3 mg per kilogram. CONCLUSIONSIn a small group of patients with hereditary ATTR amyloidosis with polyneuropathy, administration of NTLA-2001 was associated with only mild adverse events and led to decreases in serum TTR protein concentrations through targeted knockout of TTR. (Funded by Intellia Therapeutics and Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT04601051.
Abstract-Cardiac arrhythmia is a common and often lethal manifestation of many forms of heart disease. Gap junction remodeling has been postulated to contribute to the increased propensity for arrhythmogenesis in diseased myocardium, although a causative role in vivo remains speculative. By generating mice with cardiac-restricted knockout of connexin43 (Cx43), we have circumvented the perinatal lethal developmental defect associated with germline inactivation of this gap junction channel gene and uncovered an essential role for Cx43 in the maintenance of electrical stability. Mice with cardiac-specific loss of Cx43 have normal heart structure and contractile function, and yet they uniformly (28 of 28 conditional Cx43 knockout mice observed) develop sudden cardiac death from spontaneous ventricular arrhythmias by 2 months of age. Optical mapping of the epicardial electrical activation pattern in Cx43 conditional knockout mice revealed that ventricular conduction velocity was significantly slowed by up to 55% in the transverse direction and 42% in the longitudinal direction, resulting in an increase in anisotropic ratio compared with control littermates (2.1Ϯ0.
Abstract-Connexin43 (Cx43), the predominant ventricular gap junction protein, is critical for maintaining normal cardiac electrical conduction, and its absence in the mouse heart results in sudden arrhythmic death. The mechanisms linking reduced Cx43 abundance in the heart and inducibility of malignant ventricular arrhythmias have yet to be established. In this report, we investigate arrhythmic susceptibility in a murine model genetically engineered to express progressively decreasing levels of Cx43. Progressively older cardiac-restricted Cx43 conditional knockout (CKO) mice were selectively bred to produce a heart-specific Cx43-deficient subline ("O-CKO" mice) in which the loss of Cx43 in the heart occurs more gradually. O-CKO mice lived significantly longer than the initial series of CKO mice but still died suddenly and prematurely. At 25 days of age, cardiac Cx43 protein levels decreased to 59% of control values (PϽ0.01), but conduction velocity was not significantly decreased and no O-CKO mice were inducible into sustained ventricular tachyarrhythmias. By 45 days of age, cardiac Cx43 abundance had decreased in a heterogeneous fashion to 18% of control levels, conduction velocity had slowed to half of that observed in control hearts, and 80% of O-CKO mice were inducible into lethal tachyarrhythmias. Enhanced susceptibility to induced arrhythmias was not associated with altered invasive hemodynamic measurements or changes in ventricular effective refractory period. Thus, moderately severe reductions in Cx43 abundance are associated with slowing of impulse propagation and a dramatic increase in the susceptibility to inducible ventricular arrhythmias. Key Words: connexin43 Ⅲ arrhythmia Ⅲ electrophysiology Ⅲ heart Ⅲ mice V entricular tachyarrhythmias are a frequent cause of sudden cardiac death in ischemic and nonischemic heart disease. Despite intense investigation, molecular mechanisms underlying the propensity of diseased myocardium to initiate and propagate lethal arrhythmias are incompletely understood. In recent years, a number of genetically engineered murine models have been developed to explore the pathophysiology of arrhythmogenesis. Although many such mice display increases in the frequency of spontaneous or inducible ventricular ectopy, in almost all cases this activity is self-limited and has not been shown to be the proximate cause of death. 1-4 Several other mutant mouse models are able to support sustained ventricular arrhythmias, but these require provocative stimuli, such as anesthesia or exercise with administration of adrenergic agents. [5][6][7][8] To date, only the heartspecific connexin43 (Cx43) conditional knockout (CKO) mouse has been shown to die prematurely from spontaneous sustained ventricular tachyarrhythmias. 9 Because of the arrhythmic propensity of the Cx43 CKO mouse and the ease of inducible sustained arrhythmias, 10 it has served as an ideal model for the study of basic mechanisms of arrhythmia.In myopathic hearts, abnormal expression of Cx43 (gap junction remodeling) may contri...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.