SummaryPhytic acid (myo-inositol hexakisphosphate, InsP 6 ) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP 6 and pollution caused by undigested InsP 6 in animal waste. InsP 6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP 6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP 6 biosynthesis (InsP 5 2-kinase) also diminished InsP 6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP 6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP 6 , were not compromised in resistance to pathogens, suggesting that a specific pool of InsP 6 regulates defence against phytopathogens.
The Cucumber mosaic virus (CMV) 2b counter-defense protein disrupts plant antiviral mechanisms mediated by RNA silencing and salicylic acid (SA). We used microarrays to investigate defensive gene expression in 2b-transgenic Arabidopsis thaliana plants. Surprisingly, 2b inhibited expression of few SA-regulated genes and, in some instances, enhanced the effect of SA on certain genes. Strikingly, the 2b protein inhibited changes in the expression of 90% of genes regulated by jasmonic acid (JA). Consistent with this, infection of plants with CMV, but not the 2b gene-deletion mutant CMVDelta2b, strongly inhibited JA-inducible gene expression. JA levels were unaffected by infection with either CMV or CMVDelta2b. Although the CMV-Arabidopsis interaction is a compatible one, SA accumulation, usually considered to be an indicator of plant resistance, was increased in CMV-infected plants but not in CMVDelta2b-infected plants. Thus, the 2b protein inhibits JA signaling at a step downstream of JA biosynthesis but it primes induction of SA biosynthesis by another CMV gene product or by the process of infection itself. Like many plant viruses, CMV is aphid transmitted. JA is important in plant defense against insects. This raises the possibility that disruption of JA-mediated gene expression by the 2b protein may influence CMV transmission by aphids.
Lectins are proteins with multivalent carbohydrate-binding sites, which confer the ability to agglutinate. The seeds of legumes are particularly rich in lectins, for example, concanavalin A (Con A) comprises up to 15% of the protein in the cotyledons of jack bean (Canavalia ensiformis) seeds. The amino acid sequences of Con A and several other legume lectins have been partially or fully determined, and comparison of these sequences from different species reveals a circular homology (Fig. 1A); rearrangements within the genome have been suggested to explain this. We report here that the circular homology displayed by Con A is due to a post-translational transposition and ligation within the initial polypeptide. This type of modification has not been reported previously for eukaryotes, although it has been suggested to occur in bacteriophage lambda.
We have undertaken an analysis of the inositol phosphates of Spirodela polyrhiza at a developmental stage when massive accumulation of InsP6 indicates that a large net synthesis is occurring. We have identified Ins3P, Ins(1,4)P2, Ins(3,4)P2 and possibly Ins(4,6)P2, Ins(3,4,6)P3, Ins(3,4,5,6)P4, Ins (1,3,4,5,6)P5, D- and/or L-Ins(1,2,4,5,6)P5 and InsP6 and revealed the likely presence of a second InsP3 with chromatographic properties similar to Ins(1,4,5)P3. The higher inositol phosphates identified show no obvious direct link to pathways of metabolism of second messengers purported to operate in higher plants, nor do they resemble the immediate products of plant phytase action on InsP6.
Ground-level ozone (O(3)) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O(3)-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O(3) exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O(3) levels. Elevated O(3) significantly weakened the C sink strength of the tree-soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O(3) responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O(3) can substantially mitigate the C sequestration of forests in view of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.