The evolution of solution aggregates of the anionic form of the native monorhamnolipid (mRL) mixture produced by Pseudomonas aeruginosa ATCC 9027 is explored at pH 8.0 using both experimental and computational approaches. Experiments utilizing surface tension measurements, dynamic light scattering, and both steady-state and time-resolved fluorescence spectroscopy reveal solution aggregation properties. All-atom molecular dynamics simulations on self-assemblies of the most abundant monorhamnolipid molecule, L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10), in its anionic state explore the formation of aggregates and the role of hydrogen bonding, substantiating the experimental results. At pH 8.0, at concentrations above the critical aggregation concentration of 201 μM but below ~7.5 mM, small premicelles exist in solution; above ~7.5 mM, micelles with hydrodynamic radii of ~2.5 nm dominate, although two discrete populations of larger lamellar aggregates (hydrodynamic radii of ~10 and 90 nm) are also present in solution in much smaller number densities. The critical aggregation number for the micelles is determined to be ~26 monomers/micelle using fluorescence quenching measurements, with micelles gradually increasing in size with monorhamnolipid concentration. Molecular dynamics simulations on systems with between 10 and 100 molecules of Rha-C10-C10 indicate the presence of stable premicelles of seven monomers with the most prevalent micelle being ~25 monomers and relatively spherical. A range of slightly larger micelles of comparable stability can also exist that become increasing elliptical with increasing monomer number. Intermolecular hydrogen bonding is shown to play a significant role in stabilization of these aggregates. In total, the computational results are in excellent agreement with the experimental results.
Critical metals, identified from supply, demand, imports, and market factors, include rare earth elements (REEs), platinum group metals, precious metals, and other valuable metals such as lithium, cobalt, nickel, and uranium. Extraction of metals from U.S. saline aqueous, emphasizing saline, sources is explored as an alternative to hardrock ore mining. Potential aqueous sources include seawater, desalination brines, oil- and gas-produced waters, geothermal aquifers, and acid mine drainage, among others. A feasibility assessment reveals opportunities for recovery of lithium, strontium, magnesium, and several REEs from select sources, in quantities significant for U.S. manufacturing and for reduction of U.S. reliance on international supply chains. This is a conservative assessment given that water quality data are lacking for a significant number of critical metals in certain sources. The technology landscape for extraction and recovery of critical metals from aqueous sources is explored, identifying relevant processes along with knowledge gaps. Our analysis indicates that aqueous mining would result in much lower environmental impacts on water, air, and land than ore mining. Preliminary assessments of the economics and energy consumption of recovery show potential for recovery of critical metals.
Synthetic monorhamnolipids differ from biologically produced material because they are produced as single congeners, depending on the β-hydroxyalkanoic acid used during synthesis. Each congener is produced as one of four possible diastereomers resulting from two chiral centers at the carbinols of the lipid tails [(R,R), (R,S), (S,R) and (S,S)]. We compare the biodegradability (CO 2 respirometry), acute toxicity (Microtox assay), embryo toxicity (Zebrafish assay), and cytotoxicity (xCELLigence and MTS assays) of synthetic rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10) monorhamnolipids against biosynthesized monorhamnolipid mixtures (bio-mRL). All Rha-C10-C10 diastereomers and bio-mRL were inherently biodegradable ranging from 34 to 92% mineralized. The Microtox assay showed all Rha-C10-C10 diastereomers and bio-mRL are slightly toxic according to the US EPA ecotoxicity categories with 5 min EC 50 values ranging from 39.6 to 87.5 μM. The zebrafish assay showed that of 22 developmental endpoints tested, only mortality was observed at 120 hours post fertilization; all Rha-C10-C10 diastereomers and bio-mRL caused significant mortality at 640 μM, except the Rha-C10-C10 (R,R) which showed no developmental effects. xCELLigence and MTS showed IC 50 values ranging from 103.4 to 191.1
Rare earth elements (REE) are vital for modern technologies and considered critical materials. This study investigated monorhamnolipid biosurfactant interactions with REE as the basis for REE recovery technology. Conditional stability constants (log β), measured using a resin-based ion exchange method, are reported for 16 REE and metals. These results were combined with existing data for 10 other metals to assess comparative strength and determinants of binding. The stability constants could be divided into three groups: weakly, moderately, and strongly bound. The REE were all in the strongly bound group (UO, Eu, Nd, Tb, Dy, La, Cu, Al, Pb, Y, Pr, and Lu) with log β ranging from 9.82 to 8.20. The elements Cd, In, Zn, Fe, Hg, and Ca were moderately bound with log β=7.17-4.10. Finally, Sr, Co, Ni, UO, Ba, Mn, Mg, Rb, and K were weakly bound with log β=3.95-0.96. Two log β values are reported for the uranyl ion due to two distinct binding regions. A mixed metals study and associated selectivity coefficients confirmed monorhamnolipids preferentially remove metals with large log β values over those with smaller values. Preferential complexation by monorhamnolipids may constitute a green pathway for recovery of REE from alternative, non-traditional sources.
Biofilms are increasingly recognized as the predominant form for survival in the environment for most bacteria. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica, involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. In the present investigation, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. Results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.