Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA.
The ribosome has an active site comprised of RNA that catalyzes peptide bond formation. To understand how RNA promotes this reaction requires a detailed understanding of the chemical transition state. Here, we report the Brønsted coefficient of the α-amino nucleophile (β nuc) using a series of puromycin derivatives. Both 50S subunit and 70S ribosome catalyzed reactions displayed linear free-energy relationships with slopes close to zero under conditions where chemistry is rate limiting. These results indicate that at the transition state the nucleophile is neutral in the ribosome catalyzed reaction, in contrast to the substantial positive charge reported for typical uncatalyzed aminolysis reactions. This suggests that the ribosomal transition state involves deprotonation to a degree commensurate with nitrogen-carbon bond formation. Such a transition state is significantly different from that of uncatalyzed aminolysis reactions in solution.
This study examined graduate students perceptions of the educational value of their collaborative learning when using the Internet for course delivery. Students enrolled in a summer class conducted entirely online were interviewed, and their communications analyzed, to determine the salient factors associated with their collaborative experiences. Respondents indicated that although they enjoyed the convenience and opportunity for collaboration, a number of dissatisfiers were apparent with the instructional strategy and the delivery medium. Recommendations are documented in an effort to improve future courses utilizing this methodology.
All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC-dA-phosphate-puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3' end of a P-site tRNA. We have developed a solid phase synthetic approach to produce inhibitors that more closely match the transition state, including the critical P-site 2'-OH. Inclusion of the 2'-OH or an even bulkier OCH3 group causes significant changes in binding affinity. We also investigated the effects of changing the A-site amino acid side chain from phenylalanine to alanine. These results indicate that the absence of the 2'-OH is likely to play a significant role in the binding and conformation of CCdApPmn in the ribosomal active site by eliminating steric clash between the 2'-OH and the tetrahedral phosphate oxygen. The conformation of the actual transition state must allow for the presence of the 2'-OH, and transition state mimics that include this critical hydroxyl group must bind in a different conformation from that seen in prior analog structures. These new inhibitors will provide valuable insights into the geometry and mechanism of the ribosomal active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.