Comparing different rewards automatically produces dynamic relative outcome effects on behavior. Each new outcome exposure is to an updated version evaluated relative to alternatives. Relative reward effects include incentive contrast, positive induction and variety effects. The present study utilized a novel behavioral design to examine relative reward effects on a chain of operant behavior using auditory cues. Incentive contrast is the most often examined effect and focuses on increases or decreases in behavioral performance after value upshifts (positive) or downshifts (negative) relative to another outcome. We examined the impact of comparing two reward outcomes in a repeated measures design with three sessions: a single outcome and a mixed outcome and a final single outcome session. Relative reward effects should be apparent when comparing trials for the identical outcome between the single and mixed session types. An auditory cue triggered a series of operant responses (nosepoke-leverpress-food retrieval), and we measured possible contrast effects for different reward magnitude combinations. We found positive contrast for trials with the greatest magnitude differential but positive induction or variety effects in other combinations. This behavioral task could be useful for analyzing environmental or neurobiological factors involved in reward comparisons, decision-making and choice during instrumental, goal-directed action.
The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.
Polychlorinated biphenyl (PCB) is a persistent organic pollutant known to induce diverse molecular and behavioral alterations. Effects of PCB exposure could be transmitted to future generations via changes in behavior and gene expression. Previous work has shown that PCB-exposure can alter social behavior. The present study extends this work by examining a possible molecular mechanism for these changes. Pregnant rats (Sprague-Dawley) were exposed through diet to a combination of non-coplanar (PCB 47-2,2 0 ,4,4 0-tetrachlorobiphenyl) and coplanar (PCB 77-3,3 0 ,4,4 0tetrachlorobiphenyl) congeners. Maternal care behaviors were examined by evaluating the rate and quality of nest building on the last 4 d of gestation and dam/pup interactions on postnatal days 1, 2, 4 and 6. On postnatal day 17, dams were euthanized and hypothalamic tissue was removed for expression analyses of the oxytocin receptor (OXTR) and cytochrome P450 1a1 (Cyp1a1). PCB altered nest building and maternal care behaviors. Specifically, there was a significant increase in time spent in low crouch and high crouch nursing posture on PND 4 and PND 6 respectively. Molecular analysis revealed that PCB exposure upregulated OXTR expression in the hypothalamus of dams. These results provide a possible molecular mechanism for PCB-induced changes in social interactions during early development.
Prepulse inhibition (PPI) is a measure of sensorimotor gating in diverse groups of animals including humans. Emotional states can influence PPI in humans both in typical subjects and in individuals with mental illness. Little is known about emotional regulation during PPI in rodents. We used ultrasonic vocalization recording to monitor emotional states in rats during PPI testing. We altered the predictability of the PPI trials to examine any alterations in gating and emotional regulation. We also examined PPI in animals selectively bred for high or low levels of 50 kHz USV emission. Rats emitted high levels of 22 kHz calls consistently throughout the PPI session. USVs were sensitive to prepulses during the PPI session similar to startle. USV rate was sensitive to predictability among the different levels tested and across repeated experiences. Startle and inhibition of startle were not affected by predictability in a similar manner. No significant differences for PPI or startle were found related the different levels of predictability; however, there was a reduction in USV signals and an enhancement of PPI after repeated exposure. Animals selectively bred to emit high levels of USVs emitted significantly higher levels of USVs during the PPI session and a reduced ASR compared to the low and random selective lines. Overall, the results support the idea that PPI tests in rodents induce high levels of negative affect and that manipulating emotional styles of the animals alters the negative impact of the gating session as well as the intensity of the startle response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.