Highly porous (∼ 90%), high-surface area (∼1000 m 2 /g), thermally stable (1200 K) crystalline films of MgO are synthesized using a novel reactive ballistic deposition technique. The film consists of a tilted array of porous nanoscale crystalline filaments. Surprisingly, the individual filaments exhibit a high degree of crystallographic order with respect to each other. These films have chemical binding sites analogous to those on MgO(100). However, the fraction of chemically active, high energy binding sites is greatly enhanced on the nanoporous film. This unique collection of properties makes these materials attractive candidates for chemical applications such as sensors and heterogeneous catalysts.
Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe 2 O 3 ) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 m) expresses ϳ10 4 cytochromes on its outer surface.
Layer-by-layer structures of gadolinia-doped ceria and zirconia have been synthesized on Al2O3(0001) using oxygen plasma-assisted molecular beam epitaxy. Oxygen ion conductivity greatly increased with an increasing number of layers compared to bulk polycrystalline yttria-stabilized zirconia and gadolinia-doped ceria electrolytes. The conductivity enhancement in this layered electrolyte is interesting, yet the exact cause for the enhancement remains unknown. For example, the space charge effects that are responsible for analogous conductivity increases in undoped layered halides are suppressed by the much shorter Debye screening length in layered oxides. Therefore, it appears that a combination of lattice strain and extended defects due to lattice mismatch between the heterogeneous structures may contribute to the enhancement of oxygen ionic conductivity in this layered oxide system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.