Most current photoacoustic imaging (PAI) systems employ piezoelectric transducers to receive photoacoustic signals, which requires coupling medium to facilitate photoacoustic wave propagation and are not favored in many applications. Here, we report an all-optical non-contact PAI system based on a commercial heterodyne interferometer working at 1550 nm. The interferometer remotely detects ultrasound-induced surface vibration and does not involve any physical contact with the sample. The theoretically predicated and experimentally measured noise equivalent detection limits of the optical sensor are about 4.5 and 810 Pa over 1.2 MHz bandwidth. Using a raster-scan PAI system equipped with the non-contact design, stereotactic boundaries of an artificial tumor in a pig brain were accurately delineated. The non-contact design also enables the tomographic PAI of biological tissue samples in a non-invasive manner. The preliminary results and analyses reveal that the heterodyne interferometer-based non-contact PAI system holds good potential in biomedical imaging.
Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.Electronic supplementary materialThe online version of this article (doi:10.1007/s11220-013-0077-1) contains supplementary material, which is available to authorized users.
This version is available at https://strathprints.strath.ac.uk/27625/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. Insertion of CO 2 into the metal-N bond of a series of synthetically-important alkalimetal TMP (2,2,6,6-tetramethylpiperidide) complexes has been studied. Determined by X-ray crystallography, the molecular structure of the TMEDA-solvated Li derivative shows a central 8-membered (LiOCO) 2 ring lying in a chair conformation with distorted tetrahedral lithium centres. While trying to obtain crystals of a THF solvated derivative, a mixed carbonato/carbamato dodecanuclear lithium cluster was formed containing two central (CO 3 ) 2-fragments and eight O 2 CTMP ligands with four distinct bonding modes. A bisalkylaluminium carbamato complex has also been prepared via two different methods (CO 2 insertion into a pre-formed Al-N bond and ligand transfer from the corresponding lithium reagent) which adopts a dimeric structure in the solid state.
Polymer additives reliably prevent incongruent melting of sodium acetate trihydrate when temperature-cycled over multiple thousands of melting and freezing cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.