Rigid-body dynamics with unilateral contact is a good approximation for a wide range of everyday phenomena, from the operation of car brakes to walking to rock slides. It is also of vital importance for simulating robots, virtual reality, and realistic animation. However, correctly modeling rigid-body dynamics with friction is difficult due to a number of discontinuities in the behavior of rigid bodies and the discontinuities inherent in the Coulomb friction law. This is particularly crucial for handling situations with large coefficients of friction, which can result in paradoxical results known at least since Painlevé [C. R. Acad. Sci. Paris, 121 (1895), pp. 112-115]. This single example has been a counterexample and cause of controversy ever since, and only recently have there been rigorous mathematical results that show the existence of solutions to his example. The new mathematical developments in rigid-body dynamics have come from several sources: "sweeping processes" and the measure differential inclusions of Moreau in the 1970s and 1980s, the variational inequality approaches of Duvaut and J.-L. Lions in the 1970s, and the use of complementarity problems to formulate frictional contact problems by Lötstedt in the early 1980s. However, it wasn't until much more recently that these tools were finally able to produce rigorous results about rigid-body dynamics with Coulomb friction and impulses.
SUMMARYIn this paper a new time-stepping method for simulating systems of rigid bodies is given which incorporates Coulomb friction and inelastic impacts and shocks. Unlike other methods which take an instantaneous point of view, this method does not need to identify explicitly impulsive forces. Instead, the treatment is similar to that of J. J. Moreau and Monteiro-Marques, except that the numerical formulation used here ensures that there is no inter-penetration of rigid bodies, unlike their velocity-based formulation. Numerical results are given for the method presented here for a spinning rod impacting a table in two dimensions, and a system of four balls colliding on a table in a fully three-dimensional way. These numerical results also show the practicality of the method, and convergence of the method as the step size becomes small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.