Hypothesis: Undesirable forces applied to the basilar membrane during surgical insertion of lateral-wall cochlearimplant electrode arrays (EAs) can be reduced via robotic insertion with magnetic steering of the EA tip. Background: Robotic insertion of magnetically steered lateral-wall EAs has been shown to reduce insertion forces in vitro and in cadavers. No previous study of robot-assisted insertion has considered force on the basilar membrane. Methods: Insertions were executed in an open-channel scala-tympani phantom. A force plate, representing the basilar membrane, covered the channel to measure forces in the direction of the basilar membrane. An electromagnetic source generated a magnetic field to steer investigational EAs with permanent magnets at their tips, while a robot performed the insertion. Results: When magnetic steering was sufficient to pull the tip of the EA off of the lateral wall of the channel, it resulted in at least a 62% reduction of force on the phantom basilar membrane at insertion depths beyond 14.4 mm ( p < 0.05), and these beneficial effects were maintained beyond approximately the same depth, even with 10 degrees of error in the estimation of the modiolar axis of the cochlea. When magnetic steering was not sufficient to pull the EA tip off of the lateral wall, a significant difference from the nomagnetic-steering case was not found. Conclusions: This in vitro study suggests that magnetic steering of robotically inserted lateral-wall cochlear-implant EAs, given sufficient steering magnitude, can reduce forces on the basilar membrane in the first basilar turn compared with robotic insertion without magnetic steering.
Many tasks in image-guided surgery require a clinician to manually position an instrument in space, with respect to a patient, with five or six degrees of freedom (DOF). Displaying the current and desired pose of the object on a 2D display such as a computer monitor is straightforward. However, providing guidance to accurately and rapidly navigate the object in 5-DOF or 6-DOF is challenging. Guidance is typically accomplished by showing distinct orthogonal viewpoints of the workspace, requiring simultaneous alignment in all views. Although such methods are commonly used, they can be quite unintuitive, and it can take a long time to perform an accurate 5-DOF or 6-DOF alignment task. In this article, we describe a method of visually communicating navigation instructions using translational and rotational arrow cues (TRAC) defined in an objectcentric frame, while displaying a single principal view that approximates the human's egocentric view of the physical object. The target pose of the object is provided but typically is used only for the initial gross alignment. During the accuratealignment stage, the user follows the unambiguous arrow commands. In a series of human-subject studies, we show that the TRAC method outperforms two common orthogonal-view methods-the triplanar display, and a sight-alignment method that closely approximates the Acrobot Navigation System-in terms of time to complete 5-DOF and 6-DOF navigation tasks. We also find that subjects can achieve 1 mm and 1°accuracy using the TRAC method with a median completion time of less than 20 seconds. CCS Concepts: • Human-centered computing → Graphical user interfaces; Virtual reality; • Computing methodologies → Motion capture;
Hypothesis:The pose (i.e., position and orientation) of a guinea-pig cochlea can be accurately estimated using externally observable features, without requiring computedtomography (CT) scans. Background: Guinea pigs are frequently used in otologic research as animal models of cochlear-implant surgery. In robot-assisted surgical insertion of cochlear-implant electrode arrays, knowing the cochlea pose is required. A preoperative CT scan of the guinea-pig anatomy can be labeled and registered to the surgical system, however, this process can be expensive and time consuming. Methods: Anatomical features from both sides of 11 guineapig CT scans were labeled and registered, forming sets. Using a groupwise point-set registration algorithm, errors in cochlea position and modiolar-axis orientation were estimated for 11 iterations of registration where each feature set was used as a hold-out set containing a reduced number of features that could all be touched by a motion-tracking probe intraoperatively. The method was validated on 2000 simu-lated guinea-pig cochleae and six physical guinea-pig-skull cochleae.Results: Validation on simulated cochleae resulted in cochlea-position estimates with a maximum error of 0.43 mm and modiolar-axis orientation estimates with a maximum error of 8.1 degrees for 96.7% of cochleae. Physical validation resulted in cochlea-position estimates with a maximum error of 0.80 mm and modiolar-axis orientation estimates with a maximum error of 12.4 degrees. Conclusions: This work enables researchers conducting robot-assisted surgical insertions of cochlear-implant electrode arrays using a guinea-pig animal model to estimate the pose of a guinea-pig cochlea by locating six externally observable features on the guinea pig, without the need for CT scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.