Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (non-empty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality-which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual logic of partitions. That dual logic is described here. Partition logic is at the same mathematical level as subset logic since models for both are constructed from (partitions on or subsets of) arbitrary unstructured sets with no ordering relations, compatibility or accessibility relations, or topologies on the sets. Just as Boole developed logical finite probability theory as a quantitative treatment of subset logic, applying the analogous mathematical steps to partition logic yields a logical notion of entropy so that information theory can be refounded on partition logic. But the biggest application is that when partition logic and the accompanying logical information theory are 'lifted' to complex vector spaces, then the mathematical framework of quantum mechanics (QM) is obtained. Partition logic models the indefiniteness of QM while subset logic models the definiteness of classical physics. Hence partition logic may provide the backstory so the old idea of 'objective indefiniteness' in QM can be fleshed out to a full interpretation of quantum mechanics. In that case, QM will be the 'killer application' of partition logic.
The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set-just as the usual logical notion of probability based on the Boolean logic of subsets is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional entropy, and mutual information) arise in the usual way from the measure (e.g., the inclusion-exclusion principle)-just like the corresponding notions of probability. The usual Shannon entropy of a partition is developed by replacing the normalized count of distinctions (dits) by the average number of binary partitions (bits) necessary to make all the distinctions of the partition.
Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary "propositional" logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms-which is reflected in the duality between quotient objects and subobjects throughout algebra. If "propositional" logic is thus seen as the logic of subsets of a universe set, then the question naturally arises of a dual logic of partitions on a universe set. This paper is an introduction to that logic of partitions dual to classical subset logic. The paper goes from basic concepts up through the correctness and completeness theorems for a tableau system of partition logic.
The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a …nite set-just as the usual logical notion of probability based on the Boolean logic of subsets is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional entropy, and mutual information) arise in the usual way from the measure (e.g., the inclusion-exclusion principle)-just like the corresponding notions of probability. The usual Shannon entropy of a partition is developed by replacing the normalized count of distinctions (dits) by the average number of binary partitions (bits) necessary to make all the distinctions of the partition.
This is a survey and analysis-with commentary-of one of convergence or divergence. Very often the policy migration issues and the related development policies for issues push one outside what would be narrowly the sending countries. "Migration and development" is considered as "migration studies." For example, policies considered an unsettled and unresolved area for good to reduce the brain drain go directly to the issue of reason. The policy issues are surprisingly deep and run to educational reform in developing countries while policies basic issues such as the nature of development as to increase the developmental impact of remittances opposed to simple poverty reduction. North-north quickly carry one into the nature of business migration (between industrial countries), south-south development itself. Ronald Dore's ideas on educational migration (between or within developing countries), and reform are outlined as a policy approach to the brain north-south migration (from developing to industrial drain problem. Jane Jacobs' ideas on development are countries) are all covered although the paper focuses on outlined in greater length as they are little known in the north-south variety. Attention is paid to the question development economics and yet directly address the of the dynamic mechanism underlying migration being policy issues raised by migration and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.