Addictive drugs hijack mechanisms of learning and memory that normally underlie reinforcement of natural rewards and induce synaptic plasticity of glutamatergic transmission in the mesolimbic dopamine (DA) system. In the ventral tegmental area (VTA), a single exposure to cocaine efficiently triggers NMDA receptor-dependent synaptic plasticity in DA neurons, whereas plasticity in the nucleus accumbens (NAc) occurs only after repeated injections. Whether these two forms of plasticity are independent or hierarchically organized remains unknown. We combined ex vivo electrophysiology in acute brain slices with behavioral assays modeling drug relapse in mice and found that the duration of the cocaine-evoked synaptic plasticity in the VTA is gated by mGluR1. Overriding mGluR1 in vivo made the potentiation in the VTA persistent. This led to synaptic plasticity in the NAc, which contributes to cocaine-seeking behavior after protracted withdrawal. Impaired mGluR1 function in vulnerable individuals could represent a first step in the recruitment of the neuronal network that underlies drug addiction.
The corticotropin-releasing hormone receptor 1 (CRHR1) critically controls behavioral adaptation to stress and is causally linked to emotional disorders. Using neurochemical and genetic tools, we determined that CRHR1 is expressed in forebrain glutamatergic and γ-aminobutyric acid-containing (GABAergic) neurons as well as in midbrain dopaminergic neurons. Via specific CRHR1 deletions in glutamatergic, GABAergic, dopaminergic, and serotonergic cells, we found that the lack of CRHR1 in forebrain glutamatergic circuits reduces anxiety and impairs neurotransmission in the amygdala and hippocampus. Selective deletion of CRHR1 in midbrain dopaminergic neurons increases anxiety-like behavior and reduces dopamine release in the prefrontal cortex. These results define a bidirectional model for the role of CRHR1 in anxiety and suggest that an imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disorders.
Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.