Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising.
We provide a model able to predict the shielding effectiveness (SE) of carbon fiber composite (CFC) panels made of stacked layers of conducting fibers. This model permits us to obtain simple formulas in which the only parameters needed are the sheet square resistance and the effective panel thickness. These tools let us to predict a minimum SE, which always increases with the frequency and therefore constituting the worst case, from an electromagnetic shielding perspective. Consequently, the measurement of minimum SE requirements can be simply measured with a micro-ohmmeter using an specific experimental setup which is also described here. Additionally, this method allows to measure very high SE falling far beyond the dynamic range of the values measurable with the most commonly used standard, the ASTM D4935. After describing the modeling technique and the different test setups used, a cross-validation between theoretical and experimental results is made for four different samples of CFC; two designed to test the modeling assumptions and two which are representative of the ones nowadays used in a real aircraft.
The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique.
Abstract-A validation process, in which simulations and measurements are compared, is necessary to have confidence in the results obtained by numerical methods that solve scattering problems. This paper presents Radar Cross Section (RCS) measurements of new targets suitable for electromagnetic software comparison and validation. These measurements can be used as an RCS reference data for testing existing and future codes, as well as for the analysis of the scattering mechanisms.
Abstract-A new indoor facility for electromagnetic tests is presented and used here for the specific case of bistatic radar cross section (RCS) measurements. A metallic cube is selected as test case and the results are compared with the predictions obtained with different numerical methods. Good agreement is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.