After more than ten years of research and development, Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are finally going mainstream. The fifth generation telecommunication standard (5G) will make use of novel technologies to create increasingly intelligent and autonomous networks. The METRO-HAUL project proposes an advanced SDN/NFV metro-area infrastructure based on an optical backbone interconnecting edge-computing nodes, to support 5G and advanced services. In this work, we present the METRO-HAUL planning tool subsystem that aims to optimize network resources from two different perspectives: off-line network design and on-line resource allocation. Off-line network design algorithms are mainly devoted to capacity planning. Once network infrastructure is in production stages and operational, on-line resource allocation takes into account flows generated by end-user-oriented services that have different requirements in terms of bandwidth, delay, Quality Of Service (QoS) and set of VNFs to be traversed. Through the paper, we describe the components inside the planning tool, which compose a framework that enables intelligent optimization algorithms based on Machine Learning (ML) to assist the control plane in taking strategic decisions. The proposed framework aims to guarantee a fair behavior towards past, current and future requests as network resource allocation decisions are assisted with ML approaches. Additionally, interaction schemes are proposed between the open-source JAVA-based Net2Plan tool, ML libraries and algorithms in Python easing algorithm development and prototyping for rapid interaction with SDN/NFV control and orchestration modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.