Ž. Ž . For each commutative ring R we associate a simple graph ⌫ R . We investigate the interplay between the ring-theoretic properties of R and the graph-theo-Ž . retic properties of ⌫ R . ᮊ 1999 Academic Press 0 0 434
We consider stochastically modeled chemical reaction systems with mass-action kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled system with mass-action kinetics admits a complex balanced equilibrium. Feinberg's deficiency zero theorem then implies that such a distribution exists so long as the corresponding chemical network is weakly reversible and has a deficiency of zero. The main parameter of the stationary distribution for the stochastically modeled system is a complex balanced equilibrium value for the corresponding deterministically modeled system. We also generalize our main result to some non-mass-action kinetics.
Chemical reaction systems with a low to moderate number of molecules are typically modeled as discrete jump Markov processes. These systems are oftentimes simulated with methods that produce statistically exact sample paths such as the Gillespie algorithm or the next reaction method. In this paper we make explicit use of the fact that the initiation times of the reactions can be represented as the firing times of independent, unit rate Poisson processes with internal times given by integrated propensity functions. Using this representation we derive a modified next reaction method and, in a way that achieves efficiency over existing approaches for exact simulation, extend it to systems with time dependent propensities as well as to systems with delays.
A reaction network is a chemical system involving multiple reactions and chemical species. The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. This chapter is devoted to the mathematical study of such stochastic models. We begin by developing much of the mathematical machinery we need to describe the stochastic models we are most interested in. We show how one can represent counting processes of the type we need in terms of Poisson processes. This random time-change representation gives a stochastic equation for continuoustime Markov chain models. We include a discussion on the relationship between this stochastic equation and the corresponding martingale problem and Kolmogorov forward (master) equation. Next, we exploit *
The Mathematical Biosciences Institute (MBI) fosters innovation in the application of mathematical, statistical and computational methods in the resolution of significant problems in the biosciences, and encourages the development of new areas in the mathematical sciences motivated by important questions in the biosciences. To accomplish this mission, MBI holds many week-long research workshops each year, trains postdoctoral fellows, and sponsors a variety of educational programs.The MBI lecture series are readable, up to date collections of authored volumes that are tutorial in nature and are inspired by annual programs at the MBI. The purpose is to provide curricular materials that illustrate the applications of the mathematical sciences to the life sciences. The collections are organized as independent volumes, each one suitable for use as a (twoweek) module in standard graduate courses in the mathematical sciences and written in a style accessible to researchers, professionals, and graduate students in the mathematical and biological sciences. The MBI lectures can also serve as an introduction for researchers to recent and emerging subject areas in the mathematical biosciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.