Summary
Influenza A virus (IAV) is an RNA virus that is cytotoxic to most cell types in which it replicates. IAV activates the host kinase RIPK3, which induces cell death via parallel pathways of necroptosis, driven by the pseudokinase MLKL, and apoptosis, dependent on the adaptor proteins RIPK1 and FADD. How IAV activates RIPK3 remains unknown. We report that DAI (ZBP-1/DLM-1), previously implicated as a cytoplasmic DNA sensor, is essential for RIPK3 activation by IAV. Upon infection, DAI recognizes IAV genomic RNA, associates with RIPK3, and is required for recruitment of MLKL and RIPK1 to RIPK3. Cells lacking DAI or containing DAI mutants deficient in nucleic acid binding are resistant to IAV-triggered necroptosis and apoptosis. DAI-deficient mice fail to control IAV replication and succumb to lethal respiratory infection. These results identify DAI as a link between IAV replication and RIPK3 activation, and implicate DAI as a sensor of RNA viruses.
Highlights d Replicating influenza A virus (IAV) produces Z-RNAs d IAV Z-RNAs are sensed by host ZBP1 in the nucleus d ZBP1 activates MLKL in the nucleus, triggering nuclear envelope rupture d MLKL-induced nuclear rupture and necroptosis drive IAV disease severity Authors
Influenza A, B and C viruses (IAV, IBV, ICV) circulate globally and infect humans, with IAV/IBV causing most severe disease. While CD8 + T-cells confer cross-protection against different IAV strains, CD8 + T-cell responses to IBV/ICV are understudied. We dissected the CD8 + T-cell cross-reactome against influenza viruses and provided the first evidence of CD8 + T-cell cross-reactivity across IAV, IBV and ICV. Using immunopeptidomics, we identified immunodominant CD8 + T-cell epitopes from IBV, protective in mice, and found prominent memory CD8 + T-cells towards both universal and influenza type-specific epitopes in blood and lungs of healthy humans, with lung-derived CD8 + T-cells displaying a tissue-resident phenotype. Importantly, effector CD38 + Ki67 + CD8 + T-cells against novel epitopes were readily detected in IAV-and IBV-infected pediatric and adult patients. Our study introduces a new paradigm, whereby CD8 + T-cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for designing universal vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.