Research results on the effects of land cover change on water resources vary greatly and the topic remains controversial. Here we use published data worldwide to examine the validity of Fuh's equation, which relates annual water yield (R) to a wetness index (precipitation/ potential evapotranspiration; P/PET) and watershed characteristics (m). We identify two critical values at P/PET ¼ 1 and m ¼ 2. m plays a more important role than P/PET when mo2, and a lesser role when m42. When P/PETo1, the relative water yield (R/P) is more responsive to changes in m than it is when P/PET41, suggesting that any land cover changes in non-humid regions (P/PETo1) or in watersheds of low water retention capacity (mo2) can lead to greater hydrological responses. m significantly correlates with forest coverage, watershed slope and watershed area. This global pattern has far-reaching significance in studying and managing hydrological responses to land cover and climate changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.