One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.
Due to their redox reactivity, surface sorption characteristics, and ubiquity as corrosion products or as minerals in natural sediments, iron(II)-bearing minerals control to a large extent the environmental fate of actinides. Pu-L(III)-edge XANES and EXAFS spectra were used to investigate reaction products of aqueous (242)Pu(III) and (242)Pu(V) reacted with magnetite, mackinawite, and chukanovite under anoxic conditions. As Pu concentrations in the liquid phase were rapidly below detection limit, oxidation state and local structure of Pu were determined for Pu associated with the solid mineral phase. Pu(V) was reduced in the presence of all three minerals. A newly identified, highly specific Pu(III)-sorption complex formed with magnetite. Solid PuO(2) phases formed in the presence of mackinawite and chukanovite; in the case of chukanovite, up to one-third of plutonium was also present as Pu(III). This highlights the necessity to consider, under reducing anoxic conditions, Pu(III) species in addition to tetravalent PuO(2) for environmental risk assessment. Our results also demonstrate the necessity to support thermodynamic calculations with spectroscopic data.
Redox behaviour of Tc(VII)/Tc(IV) was investigated in 0.1 M NaCl solutions containing different reducing agents in the pH range 2 to 13 at 22 ºC under inert Ar atmosphere. In several samples, the 1 × 105 mol/dm
3
(M) initially added TcO4
- was reduced to form a Tc(IV) oxide solid phase with low solubility. The observed Tc redox transformation processes are systematized according to Eh
-pH conditions in solution, indicating that a borderline for the reduction of Tc(VII) to Tc(IV), TcO4
- + 3e- + 4H+⇔TcO2· xH2O(coll, hyd) + (2-x)H2O exists, independent of the reducing chemical system. This experimentally derived borderline is about 100 mV lower than the equilibrium line calculated from the reported standard redox potential of TcO2· 1.6H2O(s). This behaviour can be related to the existence of more soluble solid phase modifications, i.e. nanoparticulate Tc(IV) oxide species (TcO2· xH2O(coll, hyd)). The reaction kinetics likewise correlate to the redox potential measured in solution. Slow reduction of Tc(VII) to Tc(IV) was observed when the redox potential in the system was slightly below the above mentioned reduction borderline. Fast reduction was observed in the systems far below the borderline, but also in those systems containing Fe(II) solids, suggesting a specific surface mediated effect in the reduction process. EXAFS analysis on two magnetite samples indicate reduced Tc(IV) species which do not remain adsorbed at the reactive mineral surface and are incorporated in the magnetite structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.