The paper deals with the numerical simulation of the transonic flow through a mid-span turbine blade cascade by means of an in-house code based on the EARSM turbulence model of Hellsten [4] implemented in the commercial code ANSYS Fluent was used for the comparison. Simulations were carried out for the transonic regime close to the nominal regime. The flow separation on the suction side of the blade is caused by the interaction of the reflected shock wave with the boundary layer. The attention was focused on the modelling of the transition in the separated flow especially on the modelling of the length of the transition region. Numerical results were compared with experimental results.
Abstract. The contribution deals with the numerical simulation of 2D compressible flow though the tip-section turbine blade cascade with the supersonic inlet boundary conditions. The simulation was carried out by the in-house numerical code using the explicit algebraic Reynolds stress model completed by the bypass transition model with the algebraic equation for the intermittency coefficient. The -Re model implemented in the commercial code Fluent was used for the comparison. Predictions carried out for the nominal conditions were focused on the effect of inlet free-stream turbulence on the flow structure in the blade cascade under supersonic inlet conditions. Numerical results were compared with experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.